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Abstract 
 
High-throughput genomic sequencing has focused attention on understanding 

differences between species and between individuals. When this genetic variation 

affects protein sequences, the rate of amino acid substitution reflects both Darwinian 

selection for functionally advantageous mutations and selectively neutral evolution 

operating within the constraints of structure and function. During neutral evolution, 

whereby mutations accumulate by random drift, amino acid substitutions are 

constrained by factors such as the formation of intramolecular and intermolecular 

interactions and the accessibility to water or lipids surrounding the protein. In this thesis, 

I attempt to address structural and functional restraints that shape replacement of amino 

acids during protein evolution and apply the general rules in the study of amino acid 

variations associated with disease etiology.  

 

I first focus on the use of amino acid substitution model and address how the description 

of amino acid replacement could be improved by discriminating local structural 

environments from the following four categories of functional restraints: i) protein-

protein interactions, ii) protein-nucleic acid interactions, iii) protein-ligand interactions 

and iv) catalytic activity of enzymes. I characterize the impacts of various functional 

restraints on the conservation of amino acids in three-dimensional structures. To better 

understand how amino acids are substituted under their local environments — often 

defined by secondary structure, solvent accessibility and the existence of hydrogen-

bonds from side-chains to main-chains or other side-chains — I quantify and rank the 

determinants of amino acid substitutions in the three-dimensional structures of proteins 

by the way they affect the rate of accepted substitutions. I show that solvent 

accessibility is the most important determinant, followed by the existence of hydrogen-

bonds from the side-chain to main-chain functions and the nature of the element of 

secondary structure to which the amino acid contributes. 

 
From the observation of amino acid replacements which are under restraints of the local 

structural and functional environments, I apply those principles in the study of human 

genetic variation from the following three categories: i) Mendelian disease-related 
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variants, ii) neutral polymorphisms and iii) cancer somatic mutations. I characterize 

structural and functional environments where the variants occur and compare how the 

environments are different amongst three groups. I show that various types of variants 

are under different degrees of structural and functional restraints, which affect their 

occurrence in human proteome. Then, I exemplify how the understanding of structural 

and functional restraints imposed on proteins could help identify genetic variations 

associated with a disease by demonstrating analysis of genetic variations responsible for 

type 1 diabetes. The genetic variations are from the John Todd group, Cambridge 

institute of medical research, and consist of 355 Single Nucleotide Polymorphisms 

(SNPs) within protein coding regions. 

 

Finally, I describe a development web-based database system which houses structural 

and functional annotations of amino acid residues which have been used during this 

study. The system, which is named SAMUL, interconnects the Blundell group’s in-

house databases focused on molecular interactomes and external data sources such as 

PDB, UniProt and Ensembl. In addition, SAMUL accommodates amino acid variation 

and mutation data mentioned earlier and provides an interface in which people can 

navigate the mutations in the context of three-dimensional structure of proteins, if 

available, and interpret their severity in conjunction with the structural and functional 

environments where the variants occur at the wild type amino acid. 
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Chapter 1   
Introduction 

 

1.1 Protein Evolution 

1.1.1 Overview 

An understanding of protein evolution requires not only knowledge of genomes, protein 

sequences, structures and functions but also an understanding of selective pressures at 

the level of the whole organism and the role of the protein in cells and whole organisms 

[1,2].  

 

Insights into the relationship of protein structure, function and evolution began to 

emerge nearly fifty years ago as protein structures were determined for which there 

were multiple sequences. For example, insulin sequences from Fred Sanger in the 1950s 

[3,4] (See [5] for review) together with the three-dimensional structure from Dorothy 

Hodgkin a decade later [6,7] provided clues about the impacts of amino acid 

substitutions on tertiary structure and precursor activation, on quaternary interactions at 

dimer and hexamer interfaces, and on the putative receptor binding region [8]. Through 

the comparative analysis of insulins in different species, they observed that much of the 

sequence variation appeared to be selectively neutral; the accepted amino acids were 

able to fulfil the same structural and functional roles such as those occurring in the 

hystricomorph (e.g. rodents) insulins. However, these substitutions proved to be 

consistent with loss of ability to dimerise and stabilisation of the monomeric form. This 

presumably resulted from change of storage form, possibly related to zinc availability, 

and was therefore probably also selectively advantageous.  

 

These observations lead Kimura and Ohta to develop the neutral theory of evolution, 

which states that the majority of evolutionary changes at the molecular level are caused 

by neutral drift, the acceptance of selectively neutral mutations [9,10]. They suggested 

that mutations that disrupt the existing structure and function of a molecule occur less 
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frequently in evolution than neutral mutations. This idea was elaborated by Zuckerkandl 

and colleagues in the functional density hypothesis, which proposes that the rate of 

evolution is determined by the proportion of all possible mutations which produce a 

protein that is functionally equivalent to the wild type [11,12]. More recently, Fraser et 

al. [13] demonstrated that proteins with many interaction partners evolve more slowly 

than those with few interaction partners [14,15], but this has been disputed [15].  

 

1.1.2 Comparative analyses of homologous proteins 

The first comparisons of primary and tertiary structures of homologous proteins forty to 

fifty years ago — globins, serine proteinases and lysozymes — focused on accessibility 

to water, usually called solvent accessibility, and showed that the solvent inaccessible 

cores of proteins tended to be closely packed, more hydrophobic and more conserved 

than the surface regions [16]. Analyses of the structures from many protein families 

show that this remains a useful generalization. These early analyses also focused on 

regular secondary structures, such as α-helices and β-sheets, which were immediately 

recognised to favour particular amino acids, so providing further constraints on 

evolutionary change [17,18,19].  

 

Pauling and colleagues realized that the requirement for satisfaction of hydrogen-

bonding potential of polypeptide mainchain peptide amide (NH) and carbonyl (CO) 

groups would not only give rise to regular secondary structures [20,21], but also make 

the mainchains of proteins more hydrophobic so that they could be buried in the core of 

a globular protein along with non-polar sidechains. It soon became evident that these 

features of mainchain hydrogen bonding restrict protein architectures to a limited set of 

super-secondary structures formed by combinations of secondary structures into 

globular units, such as β-sheets, jelly rolls, β-propeller, α-helical bundles, αβ-Rossman 

fold, αβ-barrel and many others. Mainchain hydrogen bonding also has important roles 

in the formation of complex arches and turns that link α-helices and β-strands 

[22,23,24].   
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Nevertheless many main-chain peptide CO and NH groups are left unsatisfied in their 

potential to form hydrogen bonds: an early analysis of hydrogen bonding revealed that 

~40% of such groups do not form hydrogen bonds with mainchain atoms of other amino 

acids [25]. In general these occur at places where strands and helices terminate 

[25,26,27,28], bulge [29,30] or bend [31,32], but they are also common in polyproline 

or irregular, twisted strands [33,34] and in  arches and turns [22,23,24,35,36]. The 

hydrogen-bonding potential of these motifs is satisfied by water molecules or by polar 

sidechains; when the sidechains are inaccessible they provide a strong restraint on 

neutral drift. 

 

1.1.3 Knowledgebase for a comparative study 

Insight into evolutionary relationships can be gained by grouping similar proteins and 

comparing sequences and structures of members of families and superfamilies — 

proteins that are homologous or descended from a common ancestor — to be found 

amongst the more than fifty thousand proteins for which architectures have been 

determined at high resolution. Several classification resources, as shown in Table 1-1, 

categorize proteins based on the degree of similarity but they differ in definition and 

method. Nevertheless, there is general agreement on the hierarchical order of overall 

topology or fold, superfamily, family and individual domain and many proteins adopt 

regular architectural arrangements of polypeptide chains — often called protein folds — 

which categorized into the same topology [2]. In addition, it is believed that members of 

superfamilies and families are likely to have arisen from a common ancestor by 

divergent evolution. SCOP [37] and CATH [38] are two well known databases of 

hierarchical protein structure classification. HOMSTRAD [39], PASS2 [40], Toccata 

[41] and FSSP [42] provide superimposed and aligned protein families with various 

annotations at the residue level. CE [43] also provides structure comparison and 

alignment. MMDB provides structure neighbour calculations such that each structure is 

linked to related three-dimensional domains [44]. Sequence based protein family 

databases include Pfam [45] and InterPro [46]. InterPro is a consortium of several 

member databases such as PROSITE [47], Pfam, Prints [48], ProDom [49], SMART 

[50] and TIGRFAMs [51]. Using curated or computed classification schemes of 
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proteins, homology detection can be achieved using sequence and/or structure similarity 

as implemented by Gene3D [52], Superfamily [53], PhyloFacts [54], CDD [55], 

PairsDB [56] and SMART. These databases and servers can be useful resources in the 

study of protein evolution. A comprehensive comparison of these databases and servers 

is available in Orengo et al.[57]  
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Table 1-1 A list of protein classification databases and similarity search servers 

Type Database Method (tool) URL Summary 

Structure 

classification SCOP Manual Curation http://scop.mrc-lmb.cam.ac.uk/scop 

Classification of structural protein families by 

human experts 

 CATH SSAP [58] http://www.cathdb.info/ 

(Semi)automatic classification of protein 

structures into hierarchies 

 HOMSTRAD Comparer [59] http://www-cryst.bioc.cam.ac.uk/~homstrad 

Manual classification of protein homologues 

with JOY [60] format annotation 

 PASS2 Comparer http://caps.ncbs.res.in/campass/pass2.html 

Database of protein structure alignments at the 

superfamily level 

 TOCCATA Baton (successor of Comparer) http://www-cryst.bioc.cam.ac.uk/toccata/toccata.php 

Database of protein structure alignments on the 

basis of SCOP family 

 CE CE http://cl.sdsc.edu 

Protein structure comparison and alignment 

using the combinatorial extension (CE) method  

 MMDB VAST [61] http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml 

Protein structures with visualization and 

comparison analysis 

 FSSP DaliLite [62] http://ekhidna.biocenter.helsinki.fi/dali/start 

Protein fold families structurally aligned on the 

basis of exhaustive 3D structure comparison 

Sequence family Pfam HMM [63] http://pfam.sanger.ac.uk 

Collection of protein families with multiple 

sequence alignment using Hidden Markov 

Models (HMMs) 

 InterPro various methods http://www.ebi.ac.uk/interpro 

Protein families, domains, regions, repeats and 

sites in which identifiable features found in 

known proteins can be applied to new protein 

sequences 



 

 6 

 ProDom PSI-BLAST [64] http://prodom.prabi.fr/prodom/current/html/home.php 

Automatic classification of protein domain 

families on the basis of UniProt [65] 

knowledge database 

 TIGRFAMS HMM http://www.jcvi.org/cms/research/projects/tigrfams/overview/ 

Protein families based on Hidden Markov 

Models (HMMs) 

 PROSITE manual curation http://www.expasy.ch/prosite 

Protein families and domains with human-

curated annotations such as functional sites, 

sequence motifs and profiles 

Homology 

detection Gene3D profile-HMM http://gene3d.biochem.ucl.ac.uk/Gene3D/ 

Structural and functional annotation of protein 

sequences on the basis of CATH and profile-

HMM library 

 Superfamily HMM [66] http://supfam.cs.bris.ac.uk/SUPERFAMILY 

Database of structural and functional protein 

annotations on the basis of SCOP 

(super)families using HMMs 

 PhyloFacts FlowerPower [67] http://phylogenomics.berkeley.edu/phylofacts 

Pre-calculated structural and phylogenomic 

analyses of protein families and domains 

 CDD CD-Search [68] http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml 

Multiple sequence alignments for ancient 

domains and full-length proteins 

 PairsDB BLAST, PSI-BLAST [64] http://pairsdb.csc.fi 

Protein sequences and BLAST and PSI-

BLAST alignments between them 

 SMART HMM http://smart.embl-heidelberg.de 

Online tool for the exploration and 

comparative study of domain architectures in 

both proteins and genes 

 



 

 7

1.1.4 Restraints of amino acid conservation 

From the comparative analyses of insulin structures, Blundell and colleagues suggested 

that amino acid substitutions were accepted during evolution in a way that satisfied 

restraints arising from structure and function [69]. Thus, the core of the protein tended 

to be relatively conserved [16] and residues in helices and strands were substituted in 

ways that maintained the overall stabilities of these secondary structures. Most 

interestingly, a glycine with a positive phi main-chain torsion angle1 that allowed the 

chain to change direction sharply was conserved in all insulins. Substitutions of amino 

acids at positions involved in dimer formation retained their hydrophobic character in 

all species except the hystricomorpha. The conservation of B10 His in most 

mammalian, fish and bird insulins was evidence of restraints arising from the existence 

of a hexamer.  

 

The insulin structure also provided a good evidence of restraints from functional 

interactions. Residues in a patch mainly on the surface of the monomer appeared to 

have greater restraints on their substitution than could be explained by retention of the 

structure of insulin throughout evolution; this observation provided the clues about 

restraints in evolution arising from function, in this case the binding of insulin with its 

receptor. 

 

Thus, the analyses of insulins, along with parallel work on globins, lysozymes and 

serine proteinases, provided strong evidence for the conservation of tertiary structure 

during evolution, and emphasised the importance of considering restraints from protein 

interactions, in this case in terms of oligomers and receptor activation. They underlined 

the importance of local environment in the acceptance of amino acid substitutions 

during protein evolution. These are covered in more detail in section 1.2.2 

 

However, there are many other restraints that are less well understood, but provide 

important pressures in evolution. They include those that arise from DNA packaging 
                                                 
1 A positive dihedral angle around the nitrogen–α-carbon bonds in the protein main chain. For L-amino 
acids these bond angles are generally restricted to a negative value owing to steric hindrance from the side 
chains, but they can be positive when there is no side chain (Gly) or when polar side-chain interactions 
with the main-chain peptide units stabilize this. See Figure 1-1 for details. 
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and gene splicing and from the requirement of reliable and well coordinated gene 

expression [70,71,72], for example ubiquitously expressed proteins tend to evolve more 

slowly than tissue-specific genes. In addition, they arise from the process of protein 

folding [73,74], from the importance of retaining various conformational changes and 

flexibility that mediate functions in the cell, and from the need to avoid opportunistic 

interactions (interactions occurring by chance) and amyloid formation – aggregation of 

misfolded proteins into a highly ordered fibril-like structure [75,76]. Furthermore, in 

order to prevent accumulation of damaging proteins the protein degradation system 

must be finely controlled, especially for misfolded proteins resulting from mutations 

[77]. Recently, it has been found that epigenetic factors, such as DNA methylation and 

chromatic remodelling, have important roles in the regulation of gene expression [78], 

which eventually affects the evolution of proteins. Hence, an integrated approach is 

required comprehensively to understand protein evolution [79]. 

 

1.2 Amino acid substitution models 

1.2.1 A brief history 

Proteins existing in living organisms have been selected through the process of 

evolution. However, as mentioned previously, much of the amino acid variation 

between orthologues appears to be selectively neutral [9] as far as the whole organism is 

concerned and accepted amino acid substitutions result in equal fitness. It has been long 

understood that the rate and nature of accepted mutations or substitutions are different 

for the 20 amino acids in a protein.  

 

Indeed, between the late 1960s and early 1970s,  the different substitution rates and 

patterns for the 20 amino acids were first quantified by Margaret Dayhoff as the PAM 

(Percentile Accepted Mutation or Point Accepted Mutation) matrix based on 1572 

observed mutations in 71 families of closely related proteins [80]. PAM measures 

evolutionary distance of divergence in a protein where the PAM1 matrix states that the 

rate of substitution if 1% of the amino acids has changed. Using this logic, Dayhoff 

derived matrices as high as PAM250. Richard Grantham introduced a measurement 
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describing differences between amino acids, which correlate with amino acid 

substitution frequencies by categorizing chemical dissimilarity between the encoded 

amino acids [81]. The methodology was further developed by Henikoff et al. [82] to 

reflect more divergent relationships of protein sequences. BLOSUM62 is now 

recognized as a standard measure of substitution rate for 20 amino acids in the sequence 

comparisons. Jones et al. [83] introduced a fast and automated approach based on a 

maximum parsimony counting method (known as JTT substitution model) and Gonnet 

et al. [84] introduced a different method to measure differences among amino acids 

using exhaustive pairwise alignments of the protein databases as they existed at that 

time. Whelan et al. [85] applied a maximum-likelihood method to estimate the rate for 

amino acid replacement (known as WAG). Recently, Le et al. [86] claimed that they 

further refined the WAG method by incorporating the variability of evolutionary rates 

across sites in the matrix estimation and using a much larger and diverse database. All 

these substitution models are based on the sequence alignments of closely related 

protein families without considering three-dimensional information of protein structures. 

 

However, sequence alignments of homologues of known structure can be used to help 

quantify the restraints that arise from both protein structure and function in a family of 

proteins. The local environments of individual amino acid side-chains restrain the 

accumulation of amino acid substitutions as proteins undergo neutral evolution. As we 

have learnt from comparative analyses of protein structures in section 1.1.2, one of the 

strong restraints arises from the need to maintain three-dimensional structure in order to 

retain function. 

 

Analyses of protein families or superfamilies led to the idea that propensities for amino 

acids [87] and their substitution patterns [88,89] might be systematically defined in 

terms of local structural environments. Solvent accessibility of the side-chain and 

occurrence in regular secondary structures were local environments used by most 

groups [87,90,91,92]. Two further classes of local environment were added to these by 

Overington et al. [89]: (i) amino acids with a positive phi main-chain torsion angle 

(learning from the B8 Gly of insulin) and (ii) amino acids with side chains that formed 

hydrogen bonds to main-chain or other side-chain functions (inspired by the conserved 
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serine and threonine residues of the crystallins and aspartic proteinases). Below, I 

describe a substitution matrix which describes exchangeability of amino acids as a 

function of local structural environments where the amino acids occur within three-

dimensional structure of proteins. 

 

1.2.2 ESST: Environment Specific Substitution Table 

The Environment Specific Substitution Table (ESST) is a substitution table that 

considers structural restraints in the calculation of substitution patterns. Overington et al. 

[88,89] first calculated ESSTs from a set of homologous protein families whose three-

dimensional structures were available. The rationale behind ESSTs is that the 

acceptance of substitution of an amino acid in an orthologous family is subject to its 

local tertiary environment. The local structural environments of amino acids include 1) 

main-chain conformation and secondary structure, 2) solvent accessibility and 3) 

hydrogen bonding between side-chain and main-chain (see Figure 1-1). 64 ESSTs can 

be derived from a combination of structural features; four from secondary structures (α-

helix, β-strand, coil and residue with positive φ main-chain torsion angle; see Figure 1-2 

for details), two from solvent accessibility (accessible and inaccessible), and eight (23) 

from hydrogen bonds to main-chain carbonyl or amide or to another side-chain (see 

Table 1-2). These combinations of structural features restrict possible substitutions of an 

amino acid and give rise to distinct patterns of substitution. Summing all 64 tables, 

leads to an environment-independent 20*20 matrix such as PAM [80] or BLOSUM [82]. 

Hence, ESST further divides the conventional substitution table into 64 matrices, which 

differ in the local tertiary environments of amino acids in protein three-dimensional 

structures. In Chapter 2, I describe how the calculation of ESSTs can be improved by 

using only amino acids that are not involved in catalytic activity, metal or ligand 

binding, nucleic acid or protein interactions and other molecular functions. 
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Figure 1-1 Environmental categories and a schematic diagram of ESST generation 

A. Environment-specific substitution tables (ESSTs 2 ) provide the basic evidence that amino acid 

substitutions are constrained in different ways in different local environments. Such tables exploit 

categories of amino acid local structural environments, such as main-chain conformation and secondary 

structure, solvent accessibility, and hydrogen bonding between side chains and either main-chain groups 

or other side chains. For example, in part a of the figure, amino acids can be classified into 1 of 64 

environments: 4 from secondary structure (α-helix (H), β-strand (E), positive φ main-chain torsion angle 

(P) and coil (C)), 2 from solvent accessibility (accessible (A) and inaccessible (a)), and 8 from the 

existence (upper case) or absence (lower case) of hydrogen bonds from a side chain to another side chain 

(S and s), to a main-chain carbonyl group (O and o) and to a main-chain amide group (N and n). These 

combinations of structural features influence the substitution of amino acids and give rise to distinct 

patterns of amino acid substitutions.  

B. ESSTs can be generated from homologous protein structure alignments in which each residue has been 

annotated with three-dimensional structural features (explained above) and assigned to one of the 64 

environments in JOY [60] format: solvent inaccessible (upper case), solvent accessible (lower case), α-

helix (red), β-strand (blue), hydrogen bond to main-chain amide group (bold) and hydrogen bond to main-

chain carbonyl group (underlined). The frequency of amino acid substitutions is measured by each 

structural environment and averaged over all homologous protein families. Ulla [93] is a program that 

                                                 
2 http://samul.org/ESST 
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generates ESSTs from a set of structure alignments, annotated in various structural and functional 

environments for amino acid residues. 

 

 

Figure 1-2 An example of backbone dihedral (or torsion) angles and Ramachandran plot 

A. Two backbone dihedral angles, φ and ψ, are demonstrated using three amino acids, Val44-Asp45-

Ser46, from a solution structure of the zinc finger CCCH domain containing protein (PDB: 2E5S). Asp45 

is shown in the middle with Val44 and Ser46 on its left and right, respectively. Dihedral angle φ is an 

angle involving the backbone atoms C'-N-Cα-C', and ψ is a dihedral angle involving the backbone atoms 

N-Cα-C'-N. Two planes, spanning across peptide bonds, are highlighted in yellow with nitrogen and 

oxygen coloured in blue and red, respectively. Carbon and hydrogen are coloured in cyan and grey. This 

figure is drawn using PyMOL [94] with the BbPlane3 script.  

B. Once dihedral angles are calculated for every amino acid residue within a polypeptide chain, they can 

be plotted on X (φ) and Y (ψ) axis, which is known as the Ramachandran plot [95]. The plot visualises 

the possible conformations of φ and ψ angles from the same three-dimensional structure of a protein 

shown in A. Different elements of secondary structures are clustered distinctively and occupy unique 

regions as shown in the figure. However, certain regions of the plot are almost forbidden for an amino 

acid to occupy, because some torsion angles are physically and energetically unfavourable for atoms to 

adopt to prevent steric hindrance within the polypeptide chain. Hence, the Ramachandran plot could be 

used to assess the quality of a protein three-dimensional structure. This figure is drawn using the 

RAMPAGE web server [96]. 

 

                                                 
3 http://pymolwiki.org/index.php/BbPlane 
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Table 1-2 Local structural environments 

Local Structural Environments 

Existence of hydrogen-bond from side-chain4 Secondary 
Structure 

Solvent 
accessibility to other side-

chain 
to main-chain 
CO (carbonyl) 

to main-chain 
NH (amide) 

Abbreviations 

T T T CASON 

T T F CASOn 

T F T CASoN 

T F F CASon 

F T T CAsON 

F T F CAsOn 

F F T CAsoN 

accessible 

F F F CAson 

T T T CaSON 

T T F CaSOn 

T F T CaSoN 

T F F CaSon 

F T T CasON 

F T F CasOn 

F F T CasoN 

Coiled coil 

inaccessible 

F F F Cason 

T T T EASON 

T T F EASOn 

T F T EASoN 

T F F EASon 

F T T EAsON 

F T F EAsOn 

F F T EAsoN 

accessible 

F F F EAson 

T T T EaSON 

T T F EaSOn 

T F T EaSoN 

T F F EaSon 

F T T EasON 

F T F EasOn 

F F T EasoN 

beta strand 

inaccessible 

F F F Eason 

T T T HASON 

T T F HASOn 

alpha helix accessible 

T F T HASoN 

                                                 
4 T: existence, F: non-existence 
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T F F HASon 

F T T HAsON 

F T F HAsOn 

F F T HAsoN 

 

F F F HAson 

T T T HaSON 

T T F HaSOn 

T F T HaSoN 

T F F HaSon 

F T T HasON 

F T F HasOn 

F F T HasoN 

 

inaccessible 

F F F Hason 

T T T PASON 

T T F PASOn 

T F T PASoN 

T F F PASon 

F T T PAsON 

F T F PAsOn 

F F T PAsoN 

accessible 

F F F PAson 

T T T PaSON 

T T F PaSOn 

T F T PaSoN 

T F F PaSon 

F T T PasON 

F T F PasOn 

F F T PasoN 

positive-phi 
mainchain 

torsion 
angle 

inaccessible 

F F F Pason 

 

 

Figure 1-3 demonstrates that amino acid substitution patterns are influenced by local 

structural environments. In particular, a solvent inaccessible environment (Figure 1-3B) 

restricts the possible substitution of amino acids most strongly, enhancing the diagonal 

of the substitution matrix, but secondary structure and the existence of side-chain 

hydrogen-bonds also lead to different substitution patterns (see Figure 1-3A and Figure 

1-3C). These ESSTs also show that amino acids with sidechains that are hydrogen-

bonded to mainchain NH (Figure 1-3D) and CO groups are more conserved than those 

with sidechains that are not hydrogen-bonded to mainchain NH or CO. This is 
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particularly evident when sidechains are inaccessible to solvent and when they form 

hydrogen bonds to mainchain amide NH groups, as shown by the bar chart in Figure 1-4. 

This implies that a crucial element in protein structure is the satisfaction of hydrogen-

bond donor and acceptor properties of the mainchain NH and CO groups when the 

protein is folded. When these requirements are not satisfied by secondary structures, 

hydrogen bonds to sidechains might be conserved to meet this requirement [97]. In 

Chapter 3, I describe the relative importance of those local structural environments by 

an analysis of distances amongst the 64 tables – each characterised by a different set of 

restraints – followed by Principal Component Analysis (PCA). 

 

 

Figure 1-3 Four examples of ESSTs 

A-D demonstrate that amino acid substitution patterns are influenced by local structural environment. A: 

solvent-accessible β-strand with no hydrogen-bonds from sidechains, B: solvent-inaccessible β-strand 
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with no hydrogen-bonds from sidechains, C: solvent-accessible α-helix with no hydrogen-bonds from 

sidechains, and D: solvent-accessible β-strand with only one hydrogen-bonds from sidechain to 

mainchain NH (see Table 1-2 for details). Matrices B-D differ from A by only one structural environment. 

The degree of amino acid conservation is represented as heatmap from 0% (non-conserved) to 100% 

(conserved). Note that the colour scale of percentage is not evenly distributed to emphasize the difference 

of amino acid substitution patterns amongst four matrices. The pictures were drawn with the Perl GD 

module5. 

 

Compared with traditional substitution tables (PAM, BLOSUM) derived from sequence 

information only, ESSTs were shown to give more precise and discriminating measures 

of substitution probabilities [98]. ESSTs have been shown to be useful in applications to 

secondary structure prediction [98] and sequence-structure homology recognition 

[92,99]. Recently, CRESCENDO, a computer software predicting functional residues 

from known three-dimensional structures of proteins, has been successful in prediction 

of functional residues by comparing the observed substitution patterns for amino acids 

which are under both functional and structural constrains with those that are predicted 

on the basis of structure alone [100].  

 

 

Figure 1-4 Differences in the probabilities of amino acid conservation between buried polar and 

exposed non-polar environments     

Amino acids of ‘buried polar’ are from a substitution matrix ‘HaSON’ which represents solvent 

inaccessible sidechains that take part in hydrogen-bonds to mainchain functions or other sidechains, 

                                                 
5 http://search.cpan.org/dist/GD/ 
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whereas amino acids of ‘exposed non-polar’ are from ‘HAson’ which states solvent exposed sidechains 

that do not take part in hydrogen bonds (See Figure 1-1 and Table 1-2 for details). The probabilities of 

residue conservation, which are from the diagonal entries of corresponding substitution tables ‘HaSON’ 

and ‘HAson’, are plotted for 21 amino acids in descending order of the differences of probability scores. 

Note that amino acid ‘C’ represents half-cystine (disulphide bonded) and ‘J’ represents cysteine (non-

disulphide bonded). Two matrices, HaSON and HAson, are chosen to illustrate how solvent accessibility 

(A/a) and hydrogen-bonds (SON/son) affect the degree of amino acid conservation. 

 

1.3 Amino acid variations and diseases 

1.3.1 Insights gained from Mendelian disease 

Before the determination of the human genome sequence, analysis of genetic mutations 

focused on establishing the relationship between genotypes and their phenotypes, 

especially susceptibility to certain disease types [101,102]. However, there were no 

general methods identifying DNA sequences responsible for even simple Mendelian 

diseases until Botstein and colleagues developed a method which constructs a linkage 

map of the human genome, with restriction fragment length polymorphisms (RFLPs) as 

molecular markers in 1980 [103,104]. After this initial milestone, the human genetic 

linkage map and the methods and algorithms have been applied for connecting disease 

genes, traits or mutations with Mendelian diseases and successful in identification of 

1,200 disease genes including classic examples of sickle-cell anaemia [105], 

hemochromatosis [106] , and lactose intolerance [107].  See [108,109] for reviews.  

 

Detailed molecular analyses of protein structure and function have revealed that single 

amino acid substitutions or mutations are often responsible for certain disease types 

[110,111]. It has been claimed that ~60% of such Mendelian disease mutations arise 

from amino acid substitutions in their respective genes (see [108] for review). For most 

monogenic diseases, a single DNA variant resulting in an amino acid substitution is 

responsible for a certain disease type by affecting protein stability and thus function 

[112]. Hence, much effort has been expended to characterise the pattern of mutations in 

the context of sequences and structures of proteins in attempts to establish whether they 

are likely to be neutral or deleterious for the functions of the organism 
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[113,114,115,116]. Interestingly, most of the methods that aim to assess deleterious 

mutations are based on the principles observed from nature – to see whether the 

mutations conform to the neutral theory of protein evolution (see section 1.1.1), which 

selects against radical changes of amino acids.  In this context, I seek to address 

structural and functional features of proteins that restrain genetic variation leading to 

single amino acid substitutions in Chapter 4. However, real challenges at present are 

from complex diseases that obscure the genetic basis responsible for molecular 

phenotypes.  

 

1.3.2 Challenges from complex diseases 

Linkage mapping, as mentioned earlier, has been successful for Mendelian diseases 

such as Huntington disease [117] and cystic fibrosis [118,119] where the causation of 

genotype and phenotype is straightforward and the diagnosis is unequivocal due to the 

monogenic nature of the diseases [108]. However, even before the first linkage map was 

completed, it was recognized that most human traits and diseases follow complex 

modes of inheritance. Hence it is not a trivial task underpinning genetic traits or variants 

responsible for complex diseases such as cancers and diabetes where the phenotypes are 

determined by coordination of multiple genes and interactions between genes and 

environmental factors that can affect gene expressions. In addition, unlike Mendelian 

diseases for which genetic variations in protein coding regions are responsible in most 

cases, it is reported that genetic variations in intergenic regions, introns, regulatory 

regions (e.g. transcription factor binding sites) and even synonymous mutations, which 

do not change amino acid types, can be responsible for complex diseases by affecting 

translational efficiency, mRNA stability, splicing control, post-translational 

modifications and chromosomal rearrangement [120,121,122]. 

 

The difficulties seem to start to be compensated by technical advancements in modern 

sequencing methods (see for [123] a review), which enable charting genetic variations 

between human individuals in a fast and high-accurate manner. A seminal project 
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initiated from the Wellcome Trust Case Control Study (WTCCS6) harnesses the power 

of such genotyping technologies to improve our understanding of the aetiological basis 

of causes of complex diseases such as type 1 diabetes, type 2 diabetes, coronary heart 

disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease. For 

each disease type, genome sequence variations (single nucleotide polymorphisms or 

SNPs) are gathered by comparing the genetic make-up of the case group (disease) and 

the control group (normal). This allows identification of many SNPs and genes showing 

evidence of association with disease susceptibility [109,124,125,126]. In addition, the 

ENCODE project7 (ENCyclopedia Of DNA Elements) aims to identify all functional 

elements in the human genome sequence and the 1000 Genome Project 8  aims to 

construct the most accurate human genetic variation map to support disease studies. 

Table 1-3 shows a selected list of database that compiles genetic variations available in 

the public domain. These international efforts look very promising, but there is still a 

long way to go to establish a complete understanding of disease mechanisms especially 

at the molecular level. In Chapter 5, I demonstrate how our understanding of molecular 

evolution learnt from amino acid replacements can help identify genetic variations 

related to disease by exemplifying an analysis of SNPs identified from genome-wide 

association study of Type 1 Diabetes. 

 

 

                                                 
6 http://www.wtccc.org.uk/ 
7 http://www.genome.gov/10005107 
8 http://www.1000genomes.org 
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Table 1-3 A compiled list of database for human genetic variations and diseases 

Name URL Summary Reference 

HGMD http://www.hgmd.cf.ac.uk/ac/index.php A comprehensive core collection of data on published germline mutations in nuclear genes 
underlying human inherited disease. [127] 

dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/ 
A free public archive for genetic variation within and across different species developed and hosted 
by the National Center for Biotechnology Information (NCBI) in collaboration with the National 
Human Genome Research Institute (NHGRI). 

[128] 

HGVbase 
(HGBASE) http://www.hgvbaseg2p.org/ 

A catalogue of all known sequence variations (particularly single nucleotide polymorphisms (SNPs)) 
as a non-redundant set of records, which presents each variant in the context of its physical 
relationship to the nearest human gene. 

[129,130] 

ProTherm http://gibk26.bse.kyutech.ac.jp/jouhou/Protherm/prot
herm.html 

A collection of numerical data of thermodynamic parameters such as Gibbs free energy change, 
enthalpy change, heat capacity change, transition temperature etc. for wild type and mutant proteins, 
which are important for understanding the structure and stability of proteins. 

[131] 

ASEdb www.asedb.org A repository for energetics of sidechain interactions determined by alanine-scanning mutagenesis. [132] 

p53 http://www.bioinf.org.uk/p53/ Integrating mutation data and structural analysis of p53 tumor-suppressor protein. [133] 

G6PD http://www.bioinf.org.uk/g6pd/ 
An integration of up-to-date mutational and structural data of human Glucose-6-phosphate 
dehydrogenase (G6PD) from various genetic and structural databases (Genbank, Protein Data Bank, 
etc.) and latest publications. 

[134] 

MutDB http://mutdb.org/ Annotation of human variation data with protein structural information and other functionally 
relevant information. [135] 

SNPper http://snpper.chip.org/ A web-based application designed to facilitate the retrieval and use of human SNPs for high-
throughput research purposes. [136] 

ModSNP 
(SwissVar) http://expasy.org/swissvar/ A portal to search variants in Swiss-Prot entries of the UniProt Knowledgebase (UniProtKB), and 

gives direct access to the Swiss-Prot Variant pages. [137,138] 

COSMIC http://www.sanger.ac.uk/genetics/CGP/cosmic/ To store and display somatic mutation information and related details and contains information 
relating to human cancers. [139,140] 

TopoSNP http://gila.bioengr.uic.edu/snp/toposnp/ An interactive visualization of disease and non-disease associated non-synonymous single nucleotide 
polymorphisms (nsSNPs) and displays geometric and relative entropy calculations. [141] 

LS-SNP http://salilab.org/LS-SNP/ A genomic scale, computational pipeline that maps human SNPs in NCBI's dbSNP database [128] 
onto protein sequences in the SwissProt/TrEMBL databases. [142,143] 
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 SAAPdb http://www.bioinf.org.uk/saap/  Integration of information on Single Amino Acid Polymorphisms (i.e. structurally expressed SNPs 
and mutations) with analysis of the likely structural effects of these amino acid mutations. [144] 

SNPeffect http://snpeffect.vib.be/ Annotations for both non-coding and coding SNP, as well as annotations for the SwissProt set of 
human disease mutations. 

[145,146,1
47] 

SNP@Domain http://snpnavigator.net A web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and 
sequences. [148] 

T1DBase http://t1dbase.org A public website and database that supports the type 1 diabetes (T1D) research community. [149] 

PolyDoms http://polydoms.cchmc.org/polydoms/ 

A database to integrate the results of multiple algorithmic procedures and functional criteria applied 
to the entire Entrez dbSNP dataset. In addition to predicting structural and functional impacts of all 
nsSNPs, filtering functions enable group-based identification of potentially harmful nsSNPs among 
multiple genes associated with specific diseases, anatomies, mammalian phenotypes, gene ontologies, 
pathways or protein domains. 

[150] 

DMDM http://bioinf.umbc.edu/dmdm/ 
A database in which each disease mutation can be displayed by its gene, protein or domain location. 
DMDM provides a unique domain-level view where all human coding mutations are mapped on the 
protein domain. 

[151] 

DVGa http://www.ebi.ac.uk/dgva/page.php A public catalogue of the large-scale insertions, deletions, duplications and rearrangements that are 
found in the genomes of individuals within a species. [152] 

1000 Genome http://www.1000genomes.org The project aims to find most genetic variants that have frequencies of at least 1% in the populations 
studied by sequencing many individuals lightly. [153] 

WTCCC http://www.wtccc.org.uk/ 
To exploit progress in understanding of patterns of human genome sequence variation along with 
advances in high-throughput genotyping technologies, and to explore the utility, design and analyses 
of genome-wide association (GWA) studies 

[154] 
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1.3.3 Computational methods to assess genetic mutations 

Early analyses of protein structure showed that single amino acid substitutions or 

mutations are often disease associated [111]. Several studies have focused on the 

relationships between somatic mutations in the human genome (especially those in 

protein kinases [155,156] and other signalling pathway proteins [157]), and various 

human cancers. Recently, systematic resequencing of the cancer genome has revealed 

the frequency of genetic changes that are responsible for lung, breast and colorectal 

cancer [158,159]. Those genetic variations responsible for disease are now catalogued 

and accessible through web sites such as ModSNP [137], SwissVar [138], COSMIC 

[139] and HGMD [127] (see Table 1-3 for details). 

 

For most monogenic diseases, a single DNA variant resulting in an amino acid 

substitution is responsible for the disease by affecting protein stability [111]. Therefore, 

methods that predict the effect of mutations on protein stability are useful for 

identifying possible disease associations [115,160]. Indeed, several computer programs 

successfully identify protein mutations that affect protein stability (see Table 1-4). 

These computer programs are generally classified into four categories: (1) physical 

potential approach; (2) statistical potential approach; (3) empirical potential approach; 

and (4) machine-learning approach. 

 

PoPMuSiC [161,162] is a program to predict protein mutant stability changes by 

performing all possible point mutations in a given protein. The program uses different 

combinations of database-derived potentials according to the solvent accessibility of the 

mutated residues. DFIRE (distance-scaled, finite ideal-gas reference) [162] is a 

reference state for distance-dependent structure-derived potentials. DFIRE was used to 

construct a residue-specific all-atom potential of mean force from known structures, and 

the potential not only recognises more native proteins from decoy sets but also shows 

significant improvement in predicting stability changes on mutants compared to other 

physical-based, potential-based methods such as CHARMM [163] and GROMOS [164]. 
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FOLDEF [165,166] quantitatively estimates the importance of interactions contributing 

to the stability of proteins. The program uses protein structure information at the atomic 

level, and takes into account various energy terms such as van der Waals interactions, 

solvation energy and electrostatic potential. The energy terms were balanced using 

empirical data obtained from protein engineering experiments. When compared to 

statistical potential-based method such as PoPMuSiC, FOLDEF produced better 

predictions for buried residues in which the effects of atomic interactions play dominant 

roles in stabilising protein structure. On the other hand, the statistical methods better 

describe thermodynamic properties of protein surface and show better performance for 

the impact of mutation of exposed residues [117]. 

 

MUpro [167] is a machine-learning approach based on support vector machines (SVMs) 

to predict the stability changes for single site mutations. MUpro first predicts whether a 

mutation will increase or decrease the stability of protein structure, then it predicts the 

stability change resulting from single site mutations. MUpro uses various sequence and 

structure information as input features, and the method was trained and tested against 

experimental mutation data from ProTherm database [131]. I-Mutant 2.0 [168] is 

another SVM-based tool for the prediction of protein stability changes upon single point 

mutations. I-Mutant 2.0 is a descendant of I-MUTANT [169] which is based on a neural 

network that can be also used to predict whether a mutation is stabilizing or 

destabilizing. I-Mutant 2.0 can predict the direction and the ∆∆G value of the protein 

stability changes upon single point mutation only from the protein sequence. AUTO-

MUTE [170] is a combined approach to predict stability changes in protein mutants 

based on a four-body, knowledge-based and statistical contact potential, and machine-

learning techniques. 

 

Recently, the effect of mutations on the affinity of protein–protein interaction has been 

widely reviewed [171]. However, a systems approach is required to predict functional 

effect in the context of complex interaction networks. For this reason, there have been 

several efforts at interrogating genetic variations to understand their effects on protein 

structures and interaction network [143,145,172,173]. 
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Table 1-4 Computer software and web applications to study the effects genetic mutations and disease associations 

Name URL Summary Reference 

SDM http://mordred.bioc.cam.ac.uk/~sdm/sdm.php A statistical potential energy function developed to predict the effect that mutations on the 
stability of proteins. [174] 

PopMuSiC http://babylone.ulb.ac.be/popmusic/ 
A statistical potential approach for the computer-aided design of mutant proteins with 
controlled stability properties. It evaluates the changes in stability of a given protein or 
peptide under single-site mutations, on the basis of the protein's structure. 

[161,175] 

SIFT http://sift.jcvi.org/ An algorithm taking a query sequence and using multiple alignment information to predict 
tolerant and deleterious substitutions for every position of the query sequence. [176] 

DFIRE http://sparks.informatics.iupui.edu/yueyang/DFIRE/dDFIRE-service Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of 
mean force for structure selection and stability prediction. [162] 

FOLDEF http://foldx.crg.es/ 
A computer algorithm to provide a fast and quantitative estimation of the importance of the 
interactions contributing to the stability of proteins and protein complexes using an 
empirical potential approach. 

[165,166] 

Polyphen http://genetics.bwh.harvard.edu/pph/ A tool which predicts possible impact of an amino acid substitution on the structure and 
function of a human protein using straightforward physical and comparative considerations. [173,177] 

I-mutant http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant/I-Mutant.cgi A neural network method that can be used to predict whether a mutation is stabilizing or 
destabilizing. [169] 

Panther http://www.pantherdb.org/tools/ 
A library of protein families and subfamilies derived by the use of Hidden Markov Model 
(HMM) techniques indexed by a vocabulary of more than 500 biological functional terms 
(aka. subPSEC). 

[178] 

GROMOS http://www.igc.ethz.ch/GROMOS/index A force field for molecular dynamics simulation. [164] 

I-mutant 2.0 http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-
Mutant2.0.cgi SVN (Support Vector Machine) version of I-mutant. [168] 

PHD-SNP http://gpcr.biocomp.unibo.it/~emidio/PhD-SNP/PhD-SNP.htm A decision tree with the SVM-based classifier coupled to the SVM-Profile trained on 
sequence profile information. [179] 

nsSNPAnalyzer http://snpanalyzer.utmem.edu/ 
Web-based software which extracts structural and evolutionary information from a query 
nsSNP and uses a machine learning method called Random Forest to predict the nsSNP's 
phenotypic effect (the web is down at the time of this writing). 

[180] 

Pmut http://mmb2.pcb.ub.es:8080/PMut/ 
Computer software aimed at the annotation and prediction of pathological mutations by 
retrieving a series of structural parameters such as volume parameters, secondary structure 
propensities, hydrophobicity descriptors and sequence potential, among others.  

[181] 
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Mupro http://mupro.proteomics.ics.uci.edu/ A machine-learning approach based on support vector machines (SVMs) to predict the 
stability changes for single site mutations. [167] 

CUPSAT http://cupsat.tu-bs.de/ A tool to predict changes in protein stability upon point mutations. [182] 

FastSNP http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp 
An web-based application which prioritizes SNPs according to twelve phenotypic risks and 
putative functional effects, such as changes to the transcriptional level, pre-mRNA splicing, 
protein structure, etc. 

[183] 

SNPs3D http://www.snps3d.org/ A website which assigns molecular functional effects of non-synonymous SNPs based on 
structure and sequence analysis. [184] 

ERIS http://troll.med.unc.edu/eris/login.php The Eris server calculates the change of the protein stability induced by mutations (∆∆G) 
utilizing the recently developed Medusa modelling suite. [185] 

SAPRED http://sapred.cbi.pku.edu.cn/ 
An automatic pipeline to predict the disease-association of SAPs using several novel 
attributes such as Structural Neighbor Profile and Nearby Functional Sites, in addition to 
incorporating other well-known attributes such as Residue Frequency and Conservation. 

[186] 

stSNP http://ilyinlab.org/StSNP/ 

The structure SNP (StSNP) web server compares structural nsSNP distributions in many 
proteins or protein complexes. StSNP enables researchers to map nsSNPs onto protein 
structures by comparative modelling of structure with nsSNPs by MODELLER 
(http://salilab.org) and visualize their structural locations by using the multiple structure-
sequence viewer Friend. Pathway information is provided from KEGG database. 

[187] 

SNAP http://snap.humgen.au.dk/views/index.cgi A sequence analysis web server providing a simple but detailed analysis of human genes and 
their variations. [188] 

AUTO-MUTE http://proteins.gmu.edu/automute/ A combined approach to predict stability changes in protein mutants based on a four-body, 
knowledge-based and statistical contact potential, and machine-learning techniques. [189] 

Bongo www.bongo.cl.cam.ac.uk/Bongo/ A Graph theoretic measure for estimation of structural and pathological impacts of non-
synonymous SNP. [190] 

Omidios 
(SeqProfCod) http://sgu.bioinfo.cipf.es/services/Omidios/ The Omidios web site takes a query SWISS-PROT id and searches for all annotated and 

predicted protein variants (nsSNP). [191] 

F-SNP http://compbio.cs.queensu.ca/F-SNP/ It provides integrated information about the functional effects of SNPs obtained from 16 
bioinformatics tools and databases. [192] 

CHARM http://www.charmm.org/ A force field for molecular dynamics as well as the name for the molecular dynamics 
simulation and analysis package associated with them. [163] 
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1.4 Thesis outline 

In this thesis, I address structural and functional restraints that shape and affect the 

occurrence of amino acid substitution (or conservation) from the perspective of protein 

evolution and apply the general rules of amino acid replacement into disease-association 

study. This thesis describes how the knowledge learnt from protein evolution can help 

our understanding of genetic variations underlying disease aetiology. 

 

In Chapter 2, I describe how the description of amino acid replacement could be 

improved by discriminating local structural environments from the following four 

categories of functional restraints: protein-protein interactions, protein-nucleic acid 

interactions, protein-ligand interactions and catalytic activity of enzymes. In Chapter 3, 

I seek to answer the following questions: 1) what determines the replacement of amino 

acids within a group of proteins presumably descended from a common ancestor, 2) 

could we measure the extent of their contributions and prioritize them? To address these 

questions, I focus on local structural environments (see Figure 1-1) of amino acids as 

major restraints on the possible substitutions of amino acids during protein evolution. In 

Chapter 4, I describe structural and functional restraints that shape the occurrence of 

single amino acid variations in human proteins. I try to identify differences in amino 

acid variations from the following three categories: i) Mendelian disease-related 

variants, ii) neutral polymorphisms and iii) cancer somatic mutations. In Chapter 5, as 

an extension of the previous chapter, I focus on a specific example of a complex disease 

– type 1 diabetes (T1D) – and present an analysis of genetic variations related with the 

disease. The genetic variations, which are presumably responsible for T1D, are from the 

group of Professor John Todd9, Cambridge Institute of Medical Research, and consist of 

355 SNPs. I exemplify how the understanding of structural and functional restraints 

imposed on proteins can help identify genetic variations associated with a disease. In 

Chapter 6, I introduce a web-based database system SAMUL, which houses structural 

and functional annotations of amino acid residues and their variants, which have been 

                                                 
9 http://www-gene.cimr.cam.ac.uk/todd/index.html 
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the basis in this research. Lastly in Chapter 7, I discuss importance of maintaining the 

function of a protein and its role in restraining amino acid substitutions, especially 

where molecular recognition is crucial such as in enzyme active sites. Then, I 

summarize conclusions of my research and discuss limitations and future directions. 
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Chapter 2  
Discarding Functional Residues from the 
Substitution Table Improves Predictions of Active 
Sites within Three-Dimensional Structures 

 

Identification of residues responsible for a specific function of a protein can provide 

clues about the mechanism of action. Computational approaches to identifying 

functional residues have emerged as low cost alternatives to experimental methods by 

providing fast and large-scale analyses. Moreover, the demand for such approaches is 

increasing as more sequences become available from genome sequencing projects. In 

this chapter, I focus on the use of CRESCENDO to identify functional residues in 

proteins of known structure by comparing the amino acid substitutions observed in a 

family of proteins with those predicted on the basis of the protein structure. 

CRESCENDO uses Environment Specific Substitution Tables or ESSTs which define the 

way that accepted amino acid substitutions are influenced by the local structural 

environment. I describe how the calculation of ESSTs can be improved by using only 

amino acids that are not involved in catalytic activity, metal or ligand binding, nucleic 

acid or protein interactions and other molecular functions. My new substitution table 

can better describe the extent to which amino acid substitutions are under structural 

restraints. It should be of value in all applications of ESSTs, including their use in 

sequence-structure homology recognition, structure validation and structure prediction 

in addition to their use in identification of functional residues. These approaches should 

enhance the understanding of protein structure and function which is critically 

important in the post genomic era. Most of the material in this chapter has been 

published in PLoS Computational Biology10 with the same title. 

                                                 
10 Gong S, Blundell TL (2008) Discarding functional residues from the substitution table improves 
predictions of active sites within three-dimensional structures. PLoS Comput Biol 4: e1000179. 
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2.1 Introduction 

Orthologous protein families are assumed to have diverged from a common ancestor, 

mainly by accepting mutations that are selectively neutral. The rate of evolution [9] is 

assumed to be constant over evolutionary time [194,195] and so evolutionary distances 

can be measured by analysing the substitutions of amino acids. The degree of 

conservation and the nature of substitutions of amino acids will be under many 

evolutionary restraints. One of those is dependent on the need to retain the protein 

tertiary structure and usually expressed as a tendency to maintain the local structural 

environments of individual amino acids [100].  

 

An ESST11 describes the substitution of amino acids in terms of a set of structural 

environments that restrict the allowable substitutions [88,89]. By defining the local 

structural environment of amino acid residues (secondary structure, solvent accessibility 

and formation of hydrogen bonds), distinct patterns of substitutions have been observed 

[89,196]. Environment-specific substitution tables store these substitution data 

quantitatively in the form of probabilities and therefore provide information about the 

existence of each amino acid in a particular environment and the probability of its being 

substituted by any other amino acid. 

 

The ESST was improved and updated by Shi et al. [197] in 2001 by the use of the 

following features: 1) a clustering scheme to correct sampling bias, 2) a smoothing 

procedure to correct data sparsity, 3) using only high resolution structures in the 

alignments as a source of substitution matrices and 4) reduction of the bias caused by 

non-structural restraints. The last feature was designed to separate functional restraints 

from structural restraints when generating ESSTs. Because ESSTs take into account 

only structural environments, substitutions where the amino acids are conserved for 

functional reasons should not be counted in the calculation of matrices. Shi et al. took 

two kinds of functional residues into account in order to eliminate non-structural 

restraints that may cause a bias in the ESST. They were 1) residues involved in domain-

                                                 
11 http://samul.org/ESST 
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domain interactions and 2) those interacting with ligand. Such residues were masked in 

the alignment files and were not taken into account in the substitution counts. However, 

the masking appeared to have very little impact on the performance of FUGUE, a 

computer program for recognising distant homologues by sequence-structure 

comparison [197]. Chelliah et al. [198] further developed ESSTs by introducing 

functional restraints, particularly in enzymes, on amino acid substitutions as a new 

environment in addition to the 64 structural environments. They measured the 

Euclidean distance between every amino acid and the known functional residues and 

compared the degree of conservation in terms of the proximity with the functional 

residues. Their ESST, known as the function-dependent ESST, showed improvements 

in sequence-to-structure homology recognition. 

 

In this chapter, I investigate the impacts of various functional restraints on the 

conservation of amino acids in three-dimensional structures. The functional residues are 

divided into four categories according to whether they are involved in 1) protein-protein 

interaction, 2) protein-nucleic acid interaction, 3) protein-ligand interaction and 4) 

catalytic reaction at enzyme active sites. Such residues will be under greater pressure to 

be conserved throughout the evolution process where they remain critically important to 

the activity of protein and thus the selective advantage of the organism. The degree of 

functional residue conservation is measured by masking the locations in the alignment 

file and then discarding them in the calculation of substitution probabilities. The 

substitution models are compared with the non-masking model, which counts those 

functional residues in the calculation of substitution probabilities. Also, relative 

contributions of four categories of functional residues are measured by making several 

masking tables in combinatorial fashion. The substitution models are tested by 

performing computational experiments using CRESCENDO [100], which is a program 

predicting functional residues from known three-dimensional structures of proteins and 

which should be more sensitive to the accuracy of the predicted substitution tables than 

FUGUE [197]. I show that the new ESST can find 16% more functional residues 

compared with the ESST of Shi et al. [197] for the same test-set. The new ESST is 

different from previous ones in that it covers a broader range of protein families, takes 
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into account more three-dimensional structures and considers a wider variety of 

functional residues that may bias amino acid substitution patterns. 

 

2.2 Results and Discussion 

2.2.1 Locating Functional Residues in Three-Dimensional Structures 

Four categories of functional residues are considered in this study (Table 2-1). The first 

category of functional residues comprises catalytic residues of enzyme active sites, 

which are strongly conserved in orthologous families and often across superfamilies. 

CSA [199] and “ACT_SITE” records in UniProt [200] were used. The Catalytic Site 

Atlas (CSA) is a database of enzyme active sites and catalytic residues of enzymes 

whose 3D structures are available. It provides two types of entries: 1) original hand-

annotated entries derived from the primary literature and 2) entries homologous to one 

of the original entries by sequence similarity. Only the hand curated entries were taken 

into account for reasons of reliability. The second category comprised amino acids 

involved in protein-protein interactions. Data concerning protein interactions were 

retrieved from InterPare [201] which is a database for interacting interfaces between 

protein domains. InterPare uses SCOP [37] for a domain definition and detects 

interacting domain pairs if there are at least five pairs of residues that fall within 5 Ǻ 

distance between two adjacent domains. Residues interacting with nucleic acids 

comprise the third category. BIPA [202] and “DNA_BIND” records in UniProt were 

used for this category. BIPA is a database for protein-nucleic acid interactions, which 

defines the atomic interactions using a distance threshold of 5 Ǻ for van der Waals 

contacts, and HBPLUS [203] default options for hydrogen bonds and water mediated 

hydrogen bonds. The final category comprises the ligand-binding residues. For this 

information, the following UniProt feature annotations were used: “BINDING”, 

“METAL”, “NP_BIND”, and “CA_BIND” (see Table 2-1 for details). 

 

The data from InterPare, CSA and BIPA are based on three-dimensional structures of 

proteins. Hence, those functional residues can be easily identified and mapped into PDB 

entries using chain and residue numbers as unique identifiers. However, as the 
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functional feature annotations from UniProt are based on sequence information, they 

must be mapped into their corresponding PDB entries. For this purpose, I developed a 

mapping protocol named “double-map” to align a sequence from UniProt with that of 

PDB at the residue level. This mapping protocol is critically important as the exact 

functional residues from the structural alignment should be identified and masked. The 

detailed algorithm of double-map is described in Materials and Methods. 
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Table 2-1 Four Categories of Functional Residues Considered in this Study  

The versions of CSA [199] and UniProt [200] were 2.2.7 and 12.2, respectively. InterPare [201] was 

based on SCOP [37] version 1.71. The “Feature Identifier” is only for UniProt annotations. 

(A: all masking, B: no protein-protein interaction, C: no active sites, D: active-site only)  

Masking Type Functional 

Category 
Database 

Feature 

Identifier 
Description 

A B C D 
URL 

Protein-

protein 

Interaction 

InterPare N/A 

Database of domain- 

domain interaction 

interface 

√  √  http://interpare.net 

CSA N/A 

Database 

documenting 

enzyme active sites 

and catalytic 

residues in enzymes 

of 3D structure 

√ √  √ 
http://www.ebi.ac.uk/thornton-

srv/databases/CSA/ 

Catalytic 

activity 

UNIPROT ACT_SITE 

Amino acid(s) 

involved in the 

activity of an 

enzyme 

√ √  √ http://www.uniprot.org 

BIPA N/A 

Database of protein-

nucleic acid 

interactions 

√ √ √  N/A Protein-

nucleic acid 

interaction 
UNIPROT DNA_BIND 

Extent of a DNA-

binding region 
√ √ √  http://www.uniprot.org 

BINDING 

Binding site for any 

chemical group (co-

enzyme, prosthetic 

group, etc.) 

√ √ √  http://www.uniprot.org 

CA_BIND 
Extent of a calcium-

binding region 
√ √ √   

NP_BIND 

Extent of a 

nucleotide 

phosphate-binding 

region 

√ √ √   

Protein-

ligand 

interaction 

UNIPROT 

METAL 
Binding site for a 

metal ion 
√ √ √   
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2.2.2 Structure Alignments and New Environment Specific Substitution 
Table 

The new Environment Specific Substitution Table (ESST) was built based on the 

alignments of three-dimensional structures of proteins that belong to the same protein 

family. The PDB database was used as a source for the three-dimensional structures of 

proteins and SCOP as the definition of protein families and domains. SCOP version 

1.71, which was used in this study, classifies 3004 families and 75930 domains from 

27599 PDB entries. For each SCOP family, domains were clustered with sequence 

identity of 80% or more, after pre-processing the structure data (see Materials and 

Methods for details). Within a cluster defined in this way, a structure having the best 

resolution was selected as a representative for the structure alignments. This process 

yielded 1187 SCOP families having 5833 domains from 4309 PDB entries. These final 

alignments, which are shown as “ALL” in the matrix type of Table 2-2, were used as a 

source for the calculation of substitution tables.  

 

 

Table 2-2 shows 17 ESSTs and compares the numbers of structures and the functional 

residues masked from the alignments. The four matrix types, OLD, ENZ, NOENZ and 

ALL, differ in the alignment source. “OLD” is based on the 177 HOMSTRAD families, 

from which the ESST of Shi et al. [197] was derived. “ENZ” is for the 221 enzyme-

specific SCOP families whose members contain at least one “ACT_SITE” residue or 

CSA hand-curated entry. “NOENZ”, the opposite of “ENZ”, does not contain any 

“ACT_SITE” annotations or CSA entries at all. These two matrix types are prepared in 

order to assess the effect of alignment sources on the substitution patterns of amino 

acids. “ALL” is based on 1187 SCOP families described above. SCOP families that 

belong to ENZ and NOENZ are subsets of the ALL type and do not overlap as they 

include different SCOP families. Each matrix type is further divided into several 

subtypes (A, B, C and D) that differ in the masking sources of functional residues (see 

Table 2-1). This is to investigate the effect of a specific category of functional residues 

by comparing the differences in the substitution patterns. For example, the effect of 

masking enzyme active sites can be measured by calculating the difference between two 
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matrices D and X, because X does not mask any functional residues whereas D masks 

only active site residues. I made random-masking models (R), in order to assess the 

value of masking models in benchmarking the new ESSTs. The new ESSTs mask more 

functional residues than the ESST (J) of Shi et al., because the models take into account 

a broad range of structural families and functional residues. ESSTs and structure 

alignments in Table 2-2 are also available from http://samul.org/ESST. 
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Table 2-2 17 ESSTs and the Number of Functional Residue Masked from the Alignments. 

New ESSTs were based on the structure alignments of SCOP families [37]. ENZ is 221 enzyme-specific 

SCOP families which contain at least one ACT_SITE annotation of UniProt [200] or hand-curated CSA 

entry [199]. NOENZ is the opposite of ENZ. NOENZ does not even contain the predicted entries of CSA. 

ALL is the final alignment source obtained from the filtering process (see Materials and Methods). Note 

that ENZ is not an absolute complement of NOENZ; ENZ does not include any predicted active site from 

the CSA. Hence, ENZ and NOENZ do not add up to ALL. The masking sources of A, B, C and D are in 

Table 2-1. X is for non-masking and R is for random-masking. R is set as a control to see the significance 

of removing functional residues from the substitution models. The ESST of Shi et al. (OLD-J) [197] is 

based on 177 HOMSTRAD families, which consist of 706 structures. And which masks 2,048 resides 

involved in (1) interactions with heteroatoms and (2) domain-domain interactions. OLD-X and OLD-R is 

non-masking and random-masking model of OLD-J. 

Number   Alignment 
Source family structure residuea 

Matrix 
Type 

Masking 
Type 

Masking 
residuesb %Maskc 

HOMSTRAD 177 706 146,437 OLD X 0 0.00  

     J 2,048 1.40  

     B 4,601 3.14  

     R 4,601 3.14  

SCOP 221 902 235,588 ENZ X 0 0.00  

     A 37,808 16.05  

     B 6,195 2.63  

     C 36,265 15.39  

     D 1,615 0.69  

     R 37,808 16.05  

 566 2,556 384,618 NOENZ X 0 0.00 

 1,187 5,833 1,096,027 ALL X 0 0.00 

     A 198,411 18.10  

     B 21,830 1.99  

     C 191,377 17.46  

     D 1,840 0.17  

     R 198,411 18.10  
a number of all residues 
b number of masking residues 

c %Mask = number of masking residues / number of all residues * 100 
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2.2.3 Differences between Substitution Tables: the Effects of Alignment 
Source and Masking 

The new ESSTs differ from those of Shi et al. [197] in the source of structure 

alignments and the categories (and the number) of functional residues removed from the 

alignments. The differences between 17 substitution tables were measured and 

investigated in terms of 1) the conservation probability of amino acids (PCONS) and 2) 

the distance (DIST) between ESSTs (see Materials and Methods). I first looked at the 

different sources of structure alignments to assess their effects on the amino acid 

conservation in the substitution table. For this purpose, the non-masking models (X) 

from four alignment sources (OLD, ENZ, NOENZ and ALL) were compared. Figure 

2-1A plots the PCONS of 21 amino acids (PCONS in Table 2-3). The conservation 

probability in the figure is averaged over the diagonal entries (i.e. those amino acids that 

are not substituted) from 64 ESSTs for each model. The overall degree of conservation 

is 28.93, 29.10, 32.08 and 36.73% for NOENZ, ALL, ENZ and OLD respectively (see 

Table 2-3 for details). All the amino acids in OLD-type are more conserved than those 

of ALL-type, and the number of structures and families in the alignment may affect the 

PCONS. In addition, the definition of protein families and domains of HOMSTRAD is 

more stringent than those of SCOP. This will make the sequences less divergent and the 

alignments more conserved. Table 2-4 shows the P-values measured by chi-square test 

to see how significantly the amino acid conservation probabilities (shown in Table 2-3), 

are different each other. Most of matrices within ENZ-NOENZ and OLD-ALL pairs are 

significantly different each other, whereas matrices within the same matrix-type are not 

least different. Similarly, the distance of substitution tables (see Table 2-5) shows that 

NOENZ and ENZ are the most distant (507) among four tables and NOENZ and ALL 

are the closest. This is clear as NOENZ and ENZ do not share any families but all the 

families in NOENZ belong to ALL. The farthest substitution tables (highlighted in bold 

in Table 2-5) agree well with the least P-value scores (see Table 2-4) within a pair of 

matrix-type. Figure 2-1A shows that amino acids R, K, H and S of ENZ-type are more 

conserved than those from NOENZ by 17, 14.2, 8.5 and 7%, respectively. However, C 

and W from ENZ are less conserved than those of NOENZ by 24% and 9%.  
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Table 2-3 Probability of Residue Conservation 

For each masking type, the diagonal entries (not substituted entries) are averaged over 64 ESSTs. Note that there are 21 amino acids (J for cysteine and C for half-

cysteine) in this table. See Table 2-2 for the definitions of ‘Matrix types’ and ‘Masking types’.   

Matrix types OLD ENZ NOENZ ALL 

Masking types X J B R X A B C D R X X A B C D R 

A 29.84 30.08  29.84  29.72 25.84 26.92 26.02 26.89 25.88 25.98 23.66 23.36 23.90 23.25 23.89 23.38 23.33  

C 76.94 77.00  63.29  77.28 60.51 60.77 59.41 61.32 59.77 60.11 84.57 75.90 75.95 75.98 76.04 75.81 74.33  

D 44.89 44.52  41.34  45.07 41.38 38.16 37.91 40.57 38.91 42.31 35.84 38.39 36.01 35.32 37.03 37.39 38.65  

E 32.36 32.17  29.16  32.15 33.27 31.95 31.27 33.72 31.22 33.36 27.83 29.66 28.72 27.92 29.66 28.51 30.10  

F 33.99 32.71  34.14  33.88 26.07 25.60 25.26 25.68 26.09 26.19 25.00 23.53 23.96 23.32 24.07 23.54 23.97  

G 53.50 53.00  52.32  53.81 53.24 50.74 49.63 50.77 53.25 53.73 45.99 47.32 45.83 45.19 45.84 47.32 47.30  

H 38.72 32.06  28.39  38.90 33.31 32.36 31.20 33.88 31.20 34.29 24.83 24.78 23.30 22.66 24.14 23.85 25.60  

I 26.61 26.94  26.54  26.32 23.25 23.38 22.94 23.36 23.28 23.85 21.10 20.94 21.05 20.67 21.06 20.94 20.85  

J 31.33 15.68  17.45  32.03 15.20 11.86 11.30 15.10 11.84 14.95 16.79 14.72 9.31 9.37 11.32 13.36 14.30  

K 34.03 34.05  28.59  33.78 38.20 33.40 32.96 33.22 38.19 37.54 24.00 33.01 27.33 27.08 27.68 32.68 32.34  

L 36.04 35.89  36.10  36.08 31.36 31.99 31.10 31.95 31.39 31.81 30.41 29.25 29.86 29.16 29.87 29.27 29.54  

M 18.13 17.86  17.27  17.96 15.70 16.17 15.85 16.15 15.73 15.28 10.61 11.50 11.19 11.32 11.22 11.51 11.73  

N 30.16 29.96  28.19  30.33 30.97 31.56 30.65 31.74 30.79 29.92 22.36 25.93 25.69 25.13 25.77 25.88 26.02  

P 45.46 45.55  45.45  45.48 43.80 44.29 43.88 44.30 43.82 44.35 39.01 38.43 38.62 38.48 38.58 38.43 38.61  

Q 24.89 24.85  24.99  25.04 20.29 20.07 20.42 20.11 20.28 20.40 16.90 16.63 16.20 16.51 16.25 16.63 16.62  

R 35.70 34.70  33.74  35.54 40.00 40.42 40.05 40.51 39.87 40.46 22.97 30.45 29.82 30.17 29.96 30.36 31.42  

S 29.10 29.00  28.07  29.21 25.36 23.62 23.54 24.35 24.65 25.17 18.34 21.74 21.00 20.67 21.29 21.49 21.98  

T 30.08 29.95  28.94  30.00 24.88 23.21 22.78 23.31 24.87 24.60 21.79 22.62 22.38 21.84 22.40 22.61 22.87  

V 30.05 29.97  30.05  30.11 27.56 26.29 26.00 26.27 27.58 27.52 24.69 24.12 24.24 23.75 24.23 24.13 24.16  

W 49.62 49.68  50.04  49.43 34.52 36.31 34.39 36.27 34.56 36.34 43.62 32.81 34.15 32.83 34.16 32.84 33.37  

Amino 
acids 

Y 39.95 39.63  39.55  40.15 29.07 29.07 28.50 30.07 28.23 29.52 27.11 25.92 25.18 25.68 25.64 25.59 25.71  

Average 36.73 35.49  33.97  36.77 32.08 31.34 30.72 31.88 31.49 32.27 28.93 29.10 28.27 27.92 28.58 28.83 29.18  
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Table 2-4 A P-value matrix of chi-square test based on the residue conservation scores 

The chi-squared test was used to measure how significantly the amino acid conservation scores, shown in Table 2-3, are different from each other (see Materials 

and Methods). The P-value ranges from 0, which says most significant (most different), to 1, least significant (no difference at all). P-values less than 0.05 

(significantly different) are highlighted in red. Pairs of matrix-type are shaded alternately. 

 OLD ENZ NOENZ ALL Matrix 
type 1 Masking 

type 2 X J B R X A B C D R X X A B C D R 

X 1.00000 0.98211 0.86918 1.00000 0.11628 0.03931 0.01292 0.14342 0.02839 0.15550 0.00023 0.00081 0.00002 0.00001 0.00012 0.00030 0.00127 

J  1.00000 0.99982 0.54597 0.56495 0.47848 0.28773 0.62653 0.42154 0.64783 0.00885 0.03881 0.00795 0.00322 0.01894 0.02576 0.05610 

B   1.00000 0.38656 0.47653 0.53937 0.40450 0.63999 0.40290 0.56446 0.01092 0.03465 0.01231 0.00585 0.02593 0.02586 0.05663 
OLD 

R    1.00000 0.09888 0.03210 0.01034 0.12342 0.02286 0.13323 0.00020 0.00067 0.00002 0.00001 0.00010 0.00024 0.00105 

X     1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00941 0.71244 0.26917 0.19664 0.41756 0.62295 0.82144 

A      1.00000 1.00000 1.00000 1.00000 1.00000 0.02737 0.77841 0.60591 0.50805 0.71072 0.76162 0.88586 

B       1.00000 1.00000 1.00000 0.99997 0.02343 0.83048 0.71500 0.64405 0.79254 0.83085 0.92100 

C        1.00000 1.00000 1.00000 0.02911 0.74433 0.38824 0.29816 0.55600 0.66258 0.85550 

D         1.00000 1.00000 0.00897 0.75222 0.47556 0.38277 0.58180 0.73397 0.85868 

ENZ 

R          1.00000 0.00991 0.63775 0.23013 0.15999 0.36792 0.54426 0.76586 

NOENZ X           1.00000 0.93222 0.96716 0.95399 0.98535 0.93527 0.91090 

X            1.00000 0.99999 0.99997 1.00000 1.00000 1.00000 

A             1.00000 1.00000 1.00000 1.00000 0.99990 

B              1.00000 1.00000 0.99999 0.99977 

C               1.00000 1.00000 1.00000 

D                1.00000 1.00000 

ALL 

R                 1.00000 

(1: Matrix type in Table 2-2, 2: Masking type in Table 2-2)  
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Table 2-5 A distance Matrix of 17 ESSTs 

The difference between ESSTs is measured by the distance defined in Materials and Methods. Within a pair of matrix-type (OLD, ENZ, NOENZ and ALL), two 

farthest distances are in a bold character. Pairs of matrix-type are shaded alternately. 
Matrix 
Type1  OLD ENZ NOENZ ALL 

 Masking 
Type 2 X J B R X A B C D R X X A B C D R 

X 0.0 170.7 220.6 33.8 464.0 481.6 487.0 465.6 481.6 460.6 464.9 466.1 489.2 496.3 476.9 474.7 459.5 

J  0.0 161.3 177.9 437.5 443.0 446.8 437.1 444.2 433.6 428.6 428.2 433.6 441.7 426.8 432.7 420.6 

B   0.0 226.1 430.5 427.4 426.1 425.4 432.0 425.7 435.5 435.5 432.5 438.6 427.8 437.5 424.5 
OLD 

R    0.0 465.3 482.7 488.4 466.4 483.2 461.8 465.5 467.7 491.1 498.2 478.7 476.5 461.1 

X     0.0 145.8 133.0 124.8 74.9 84.3 507.0 340.4 356.1 365.5 345.0 348.2 322.6 

A      0.0 74.9 73.3 124.3 147.6 501.2 363.5 340.3 356.5 338.0 364.1 342.5 

B       0.0 107.2 104.7 146.8 492.4 344.3 325.8 334.8 324.2 344.1 324.5 

C        0.0 141.6 128.3 502.2 361.6 351.1 366.7 340.7 368.1 341.1 

D         0.0 109.6 505.3 342.2 343.8 353.4 340.6 343.0 323.7 

ENZ 

R          0.0 508.3 357.3 367.8 378.9 357.5 364.4 337.5 

NOENZ X           0.0 310.8 309.0 303.1 306.9 308.8 315.9 

X            0.0 147.0 130.7 132.7 37.9 73.1 

A             0.0 70.8 44.3 136.2 147.5 

B              0.0 83.7 117.5 141.4 

C               0.0 132.9 134.6 

D                0.0 81.1 

ALL 

R                 0.0 

(1: Matrix type in Table 2-2, 2: Masking type in Table 2-2)  
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Figure 2-1 Probabilities of Residue Conservation for 21 Amino Acids  

The probability of residue conservation (PCONS) was averaged for the diagonal axis of substitution tables. 

A. PCONS values of three matrix-types (ENZ, NOENZ and ALL) are compared with those of OLD. Non-

masking models (X) were used for three matrix-types and OLD to see the effect of alignment source. 

(ENZ: enzyme-specific 221 SCOP families, NONENZ: non-enzymes, ALL: all the alignments, OLD: 

non-masking ESST of shi et al. [197]. See Table 2-2 for details) 

B. Five masking tables and one non-masking table are compared with the ESST of Shi et al. [197]. 

Masking and non-masking tables are from the 221 enzyme-specific alignments (ENZ). Masking sources 

of A, B, C and D are listed in Table 2-1. (R: random-masking, X: non-masking) 

 

Figure 2-1B shows the comparison of PCONS values of amino acids from the same 

source of alignment (ENZ) but having different masking types (A, B, C and D) with 

those of non-masking (X), random-masking (R) and ESST of Shi et al. (OLD-J). 

Overall, the differences of PCONS among the tables are less clear than the differences 

shown in Figure 2-1A. In addition, Table 2-5 shows that the distances (DIST) between 

tables of different masking types, but having the same alignment source, are smaller 

than the distances of tables from the different alignment sources. This explains why the 

variations of PCONS and DIST between tables are more affected by the source of 

alignments than the masking sources. However, the relationship between PCONS (or 

DIST) and the number of masking residues (%Mask) could be clearly understood by the 

Spearman’s rank correlation between the two (see Table 2-6). Increasing the masking of 

functional residues (%Mask) from the alignments leads to smaller PCONS values and 

greater differences as measured by DIST between the substitution tables. The 
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correlation between PCONS and %Mask (-0.3) was not made more distinctive by 

removing residues involved in protein-protein interactions. A-type masks 13.4% and 

16.9% many more residues than B-type in ENZ and ALL, respectively, where the 

discrepancies lie in the protein-protein interactions as B does not include InterPare as 

masking sources. However, the average PCONS of A is bigger than B, although A masks 

much more residues than B. This becomes much clearer on looking at the PCONS of A 

and D where the difference is in residues annotated as CSA and ACT_SITE. The PCONS 

of D is bigger than A, although D masks many fewer residues than A. The result shows 

that the residues involved in protein-protein (or domain-domain) interactions are not as 

conserved as residues responsible for the catalytic activity of enzymes. From PCONS of 

ENZ-D and ENZ-X (Table 2-3), which differ in active sites as the masking source, I 

observe that active site residues J, D, H and E are most conserved throughout enzyme 

families, where H is the most abundant amino acid annotated as ACT_SITE or CSA 

followed by D, E and J. 

 

 

Table 2-6 Rank Correlation 

Spearman’s rank correlations were calculated between the variables of PCONS, Z-score, SENS, DIST 

and %Mask. See Materials and Methods for the definition of Spearman’s rank correlation. %Mask is from 

Table 2-2. Z-Score and SENS are from Table 2-8. DIST is from the first row of Table 2-5. PCONS is from 

the bottom line of Table 2-3.  

 PCONS Z-score SENS DIST %Mask 

PCONS 1 -0.85 -0.93 -0.38 -0.30 

Z-score  1 0.95 0.54 0.45 

SENS   1 0.48 0.45 

DIST    1 0.29 

%Mask     1 

(Pcons: average probability of residue conservation taken from Table 2-3, Z-score: average Z-score of 602 

active sites, SENS: sensitivity, DIST: distance between two ESSTs, %Mask: percentage of discarded 

functional residues) 
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2.2.4 Benchmarking Design 

The performance of the new ESSTs was benchmarked by using CRESCENDO [100], 

which is a program for predicting functional residues given a three-dimensional 

structure. The rationale behind CRESCENDO is to distinguish functional restraints 

from structural restraints, both of which give rise to the conservation of amino acids in 

the evolutionary process. For example, amino acids in the core region of a protein are 

conserved or conservatively varied in order to maintain an appropriate structure (and 

ultimately function) whereas the catalytic triad of a protease, such as CYS-HIS-ASP, is 

conserved to maintain the functional properties of the enzyme family. CRESCENDO 

quantifies the degree of amino acid conservation by measuring 1) the observed value 

based on the alignment to which a queried protein sequence belongs and 2) the expected 

value calculated by using ESST. Note that the first value reflects both structural and 

functional restraints, whereas the latter only reflects the structural restraints because 

ESST, by definition, only takes structural environments into account. The overall 

difference between the two is converted into Z-score (or CRESCENDO score) which 

can represent extra restraints - probably functional - on the process of evolution. Hence, 

the more accurate the ESST, the less good the agreement between the probabilities of 

conservation observed and that predicted on the basis of the structure of the protein 

alone. CRESCENDO can be a good benchmarking tool for the evaluation of new 

ESSTs, because more functional residues are masked than the old ESST. In addition, I 

could identify relative contributions of four masking resources on the performance of 

ESSTs. The benchmarking was designed to investigate the following two questions. (1) 

How well can a new ESST identify functional residues compared with the ESST of Shi 

et al. which is used currently as the default by CRESCENDO? (2) If there is any 

improvement, what makes the improvement? 

 

From 221 enzyme-specific SCOP families for ENZ in Table 2-2, one third (73 SCOP 

families) were selected as a test-set and the rest were used to make benchmarking-

ESSTs for ENZ. The test-set consists of 339 SCOP domains having 81,410 residues in 

total. Out of 81,410 residues, 602 residues are active sites (ACT_SITE or CSA), 11,917 

residues are annotated by InterPare, 194 residues for nucleic-acid interactions and 1,348 
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residues are involved with ligand interactions. They are the true functional residues that 

need to be predicted using CRESCENDO in order to evaluate the performance of our 

new ESST. In the analysis I took only the first cluster as the predicted residues. The 

performance of the new ESST was compared with that of the old in terms of detecting 

functional residues. Note that, for both ENZ and ALL types, the 73 SCOP families in 

the test-set were removed from the original ESST. The benchmarking ESSTs were 

renamed as At, Bt, Ct, Dt, Rt and Xt to distinguish them from the original new ESSTs 

which are A, B, C, D, R and X, respectively. This was in order to make our 

benchmarking an unbiased blind test by removing sequences in the test-set which might 

affect the benchmarking results. In the case of OLD and NOENZ, the original masking 

types were used in the benchmarking process as they did not contain SCOP families in 

the test-sets. The test-sets and benchmark results are accessible from 

http://samul.org/ESST. 

 

2.2.5 Performance of new ESSTs in Detecting Functional Residue 

Table 2-7 shows the average Z-score of CRESCENDO for 602 active sites, 11,917 PPI 

residues, 194 residues for protein-nucleic acid interactions (PNI) and 1348 residues 

responsible for interaction with ligands (PLI) along with the P-values for the predicted 

residues. The P-value demonstrates that the Z-score of the predicted residues is different 

from the randomly selected residues with a 0.09 level of significance. In other words, 

the predicted residues of CRESCENDO are far from random within a 0.09 error rate. 

The Z-scores for all the residues (81,410) in the test-sets are compared with those of 

functional residues predicted by CRESCENDO. The average Z-score of all the residues 

is near zero, regardless of masking types, which means there are no differences between 

the probabilities of residue conservations observed in the alignments and those 

predicted by ESST. However, the Z-scores for 602 active sites range between 0.48 and 

0.93 depending on matrix type and masking source. This observation suggests there are 

extra restraints that make the active sites more conserved in families of homologous 

proteins. The Z-scores of 1,348 PLI (Protein-Ligand Interaction, see Table 2-7) residues 

also imply that they are under restraints in addition to those arising from structure. On 

the other hand, the average Z-scores for PPI and PNI residues are much smaller than 
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that of 602 active sites. This may suggest that residues at protein-protein interfaces are 

under less strong restraints than residues responsible for the catalytic activity. However, 

there is strong evidence that sub-regions in protein interfaces – so called hot spots – are 

energetically more important and may be under stronger restraints in evolution 

[204,205]. 

 

Table 2-7 Z-score of CRESCENDO for Functional Residues 

The average Z-scores are shown for four categories of functional residues in the test-sets: catalytic 

activity, protein-protein interactions, protein-nucleic acid interactions and protein-ligand interactions. The 

test-sets consist of 73 SCOP families, which is one third of SCOP families in ENZ (see Table 2-2). 

Average Z-score Matrix 
Type 

Masking 
Type† alla predictedb active sitec PPId PNIe PLIf 

Ratiog P-valueh 

OLD X 0.00063 1.396 0.480 0.0250 0.055 0.449 0.78 0.081 

 R 0.00067 1.402 0.483 0.0249 0.052 0.450 0.79 0.080 

 J 0.00062 1.410 0.612 0.0284 0.055 0.461 1.00 0.079 

 B 0.00065 1.420 0.734 0.0274 0.059 0.490 1.20 0.078 

ENZ Xt 0.00060 1.387 0.635 0.0042 0.024 0.426 1.04 0.083 

 Rt 0.00060 1.387 0.652 0.0067 0.025 0.431 1.06 0.083 

 Ct 0.00063 1.413 0.734 0.0100 0.025 0.427 1.20 0.079 

 Dt 0.00062 1.399 0.772 0.0078 0.051 0.428 1.26 0.081 

 At 0.00063 1.423 0.858 0.0143 0.056 0.433 1.40 0.077 

 Bt 0.00064 1.411 0.870 0.0086 0.068 0.447 1.42 0.079 

NOENZ X 0.00063 1.420 0.835 0.0046 0.099 0.508 1.36 0.078 

ALL Xt 0.00063 1.414 0.696 0.0085 0.068 0.489 1.14 0.079 

 Rt 0.00064 1.415 0.771 0.0065 0.075 0.501 1.26 0.079 

 Dt 0.00066 1.412 0.798 0.0055 0.078 0.495 1.30 0.079 

 At 0.00064 1.433 0.860 0.0159 0.069 0.495 1.41 0.076 

 Ct 0.00067 1.436 0.893 0.0155 0.077 0.515 1.46 0.076 

 Bt 0.00068 1.435 0.936 0.0073 0.086 0.518 1.53 0.076 

aTotal number of residue from test-sets (81,410) bResidue predicted by CRESCENDO cActive-site residues (602) 

dProtien-protein interaction sites (11,917) 
eProtein-nucleic acid interaction sites 
(194) 

fProtein-ligand interaction sites 
(1,348) 

gRatio of Z-score at the active site residues compared with that of OLD-J hP-value (right-tail) of the predicted residues 

† Xt, Rt, Ct, Dt, At, Bt: bench marking ESSTs where the test-set are eliminated from X, R, C, D, A and D, respectively 
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In Table 2-8, the performance of 17 ESSTs is compared in terms of recognizing 602 

active-site residues. SENS, SPEC and COV were measured using the ratios of TP (true 

positive), FP (false positive), FN (false negative) and TN (true negative) (see Materials 

and Methods for the definitions). The Z-score and SENS are plotted together in Figure 

2-2; they are highly correlated having 0.95 Spearman’s rank correlation score (see Table 

2-6). As shown in Figure 2-2, the average Z-scores and SENS of non-masking (X) and 

random-masking (R) models are always less than those from masking-models (A, B, C 

and D) within the same matrix type. This clearly shows that the position of masking is 

significant and discarding the substitution counts of functional residues from the 

substitution table can increase the performance of CRESCENDO by making ESST less 

dependent on the substitution patterns of the residues under functional restraints. This 

result is clearer from the rank correlation (0.45) between %Mask and SENS in Table 

2-6. In addition, the new masking models (A, B, C and D) outperform the ESST of Shi 

et al. (J) and even the non-masking model (ENZ-X, NOENZ-X and ALL-X) outperform 

J (see Figure 2-2 and Table 2-8) This can be explained in terms of PCONS and SENS; the 

average PCONS is highest in the order of J, followed by ENZ-X, ALL-X and NOENZ-X, 

but the performance (SENS) is exactly the reverse order of PCONS. Figure 2-3A shows 

an example of predicting active sites of a SCOP domain d1evua4 (a domain in the A 

chain of PDB 1evu, [206] which is a cysteine proteinase containing three active site 

residues annotated by UniProt. Three active site residues (CYS-314, HIS-373 and ASP-

396) could be identified only by ALL-type ESSTs (ALL-B and ALL-C), which are 

highly ranked in Figure 2-2. This is probably because PCONS of ALL is lower than that 

of ENZ and OLD for the local environments of the three catalytic residues. 
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Table 2-8 Performance of 17 ESSTs on Detecting Active Sites 

Out of 81,410 residues in the test-sets, 602 residues are annotated as “ACT_SITE” by UniProt [200] or 

CSA [199]. For those active sites, CRESCENDO [100] could either correctly predict (TP) or fail to 

predict (FN) (see text). Two active sites of ‘d7odca1’ (A chain of PDB 7odc), which is a SCOP domain in 

the test-sets, was discarded as of an internal error; hence, 600 active sites either in the TP or FN. The 

number of predicted residues is same as the sum of TP and FP for each ESST type. Note that residues 

only from the first cluster of predicted residues (rank 1) were considered in this analysis. 
Matrix 

Type 

Masking 

Type 
TP FP FN TN SENS SPEC COV F-measure 

OLD X 168 4832 432 75976 0.28 0.9401 0.0336 0.060 

 R 168 4830 432 75978 0.28 0.9401 0.0336 0.060 

 J 189 4877 411 75931 0.315 0.9395 0.0373 0.067 

 B 219 4888 381 75920 0.365 0.9394 0.0429 0.077 

ENZ Xt 221 4942 379 75866 0.3683 0.9387 0.0428 0.077 

 Rt 225 4968 375 75840 0.375 0.9384 0.0433 0.078 

 Ct 240 4870 360 75938 0.4 0.9396 0.047 0.084 

 Dt 248 4977 352 75831 0.4133 0.9383 0.0475 0.085 

 At 264 4805 336 76003 0.44 0.9404 0.0521 0.093 

 Bt 270 4984 330 75824 0.45 0.9382 0.0514 0.092 

NOENZ X 273 5234 327 75574 0.455 0.9351 0.0496 0.089 

ALL Xt 249 5283 351 75525 0.415 0.9345 0.045 0.081 

 Dt 259 5285 341 75523 0.4317 0.9345 0.0467 0.084 

 Rt 262 5246 338 75562 0.4367 0.935 0.0476 0.086 

 At 273 5150 327 75658 0.455 0.9362 0.0503 0.091 

 Ct 277 5136 323 75672 0.4617 0.9363 0.0512 0.092 

 Bt 282 5187 318 75621 0.47 0.9357 0.0516 0.093 

(TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative, SENS: Sensitivity, SPEC: 

Specificity, COV: Coverage) 
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Figure 2-2 Performance of 17 ESSTs on Detecting Active Site Residues 

Z-score (blue) and sensitivity (red) are plotted against 17 ESSTs. Z-score is averaged for 602 active-site 

residues in the test-sets (see text). Z-score and sensitivity (SENS) are highly correlated (0.95 in 

Spearman’s rank correlation, Table 2-6). If any SCOP families in the test-sets are included in 17 ESSTs, 

they are removed from the ESSTs to avoid any bias. Those benchmarking ESSTs are marked by ‘t’ (e.g. 

At, Bt, Ct and Dt) to distinguish from the original. Z-score and SENS of non-masking (X) and random-

masking (R) tables are always lower than those of masking models (At, Bt, Ct and Dt) within the same 

matrix type (OLD, ENZ, ALL). All the masking-tables outperform the ESST of Shi et al. (J) [197].  
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Table 2-9 shows the recognition performance for 11,917 PPI residues with the same 

measurements (TP, FP, FN and TN) in Table 2-8. Four masking substitution tables of 

ALL-matrix could detect more PPI residues than that of Shi et al. (J), but not all tables 

in ENZ-matrix outperform J. Regardless of matrix types and masking types, the 

sensitivity (SENS) of detecting PPI residues is much lower than those for detecting 

active site residues. This probably arises from the average Z-score for PPI residues (see 

Table 2-7) which is close to zero, suggesting less strong evidence for extra restraints. 

Figure 2-3B shows an example of predicting PPI residues of a SCOP domain d1i7kb_ 

(B chain of PDB 1i7k, [207]) which is a ubiquitin conjugating (UBC) enzyme 

containing 14 residues interfacing with the A chain. Using ALL-A, CRESCENDO 

predicted 12 residues of which five were correct PPI residues (true positive, coloured in 

pink in Figure 2-3B). Among the nine missing residues (orange), PRO-30, SER-87, 

TYR-91, GLU-120 and LYS-121 were highly accessible (more than 50 Å2) to solvent in 

the complex whereas five true positives had relatively small solvent accessible area (see 

Figure 2-3B for details). Thus, as expected, residues within the protein-protein 

interaction interface that are partially accessible are less conserved and more difficult to 

identify by CRESCENDO. Table 2-10 contains benchmark results for detecting residues 

interacting with nucleic acids and ligands. The sensitivity is better than the 

benchmarking results of recognizing PPI residues but still less than that of detecting 

active site residues. Figure 2-3C and Figure 2-3D show examples of predicting residues 

interacting with nucleic-acids and ligands, respectively (see legend to Figure 2-3 for 

details). 
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Table 2-9 Performance of ESSTs on Protein-Protein Interaction Residues  

11,917 residues are annotated by InterPare [201] out of 81,410 residues in the test-sets. The definitions of 

TP, FP, FN, TN, SENS, SPEC, COV and F-measure are same as Table 2-8. Residues only from the first 

cluster of predicted residues were considered in this analysis. 
Matrix 
Type 

Masking 
Type TP FP FN TN SENS SPEC COV F-measure 

OLD B 931 4176 10986 65317 0.0781 0.8560 0.1823 0.1094 

 R 934 4064 10983 65429 0.0784 0.8563 0.1869 0.1104 

 X 939 4061 10978 65432 0.0788 0.8563 0.1878 0.1110 

 J 939 4127 10978 65366 0.0788 0.8562 0.1854 0.1106 

ENZ At 906 4163 11011 65330 0.0760 0.8558 0.1787 0.1067 

 Ct 908 4202 11009 65291 0.0762 0.8557 0.1777 0.1067 

 Xt 921 4242 10996 65251 0.0773 0.8558 0.1784 0.1078 

 Rt 925 4268 10992 65225 0.0776 0.8558 0.1781 0.1081 

 Dt 960 4265 10957 65228 0.0806 0.8562 0.1837 0.1120 

 Bt 973 4281 10944 65212 0.0816 0.8563 0.1852 0.1133 

NOENZ X 893 4614 11024 64879 0.0749 0.8548 0.1622 0.1025 

ALL Xt 930 4602 10987 64891 0.0780 0.8552 0.1681 0.1066 

 Bt 953 4516 10964 64977 0.0800 0.8556 0.1743 0.1096 

 Dt 963 4581 10954 64912 0.0808 0.8556 0.1737 0.1103 

 Rt 980 4528 10937 64965 0.0822 0.8559 0.1779 0.1125 

 Ct 1000 4245 10917 65248 0.0839 0.8567 0.1907 0.1165 

 At 1003 4420 10914 65073 0.0842 0.8564 0.1850 0.1157 

 

 



Table 2-10 Performance of ESSTs on the Residue Interacting with Nucleic-acids and Ligands  

Out of 81,410 residues in the test-sets, 194 residues are annotated as DNA_BIND by UniProt [200] or 

BIPA and 1348 residues are annotated as either BINDING, CA_BIND, NP_BIND or METAL by UniProt 

(see Table 2-1 for the annotations). For those residues, if CRESCENDO [100] could correctly predict, 

they were counted as TP. 

Matrix Type Masking Type PNIa  PLIb  

  TPc SENSd TPc SENSd 

OLD B 20 0.1031 274 0.2033 

 J 25 0.1289 261 0.1936 

 R 22 0.1134 261 0.1936 

 X 22 0.1134 253 0.1877 

ENZ At 24 0.1237 259 0.1921 

 Bt 25 0.1289 265 0.1966 

 Ct 25 0.1289 254 0.1884 

 Dt 27 0.1392 261 0.1936 

 Rt 22 0.1134 260 0.1929 

 Xt 22 0.1134 259 0.1921 

NOENZ X 32 0.1649 279 0.2070 

ALL At 27 0.1392 281 0.2085 

 Bt 34 0.1753 283 0.2099 

 Ct 27 0.1392 286 0.2122 

 Dt 40 0.2062 280 0.2077 

 Rt 34 0.1753 277 0.2055 

 Xt 35 0.1804 291 0.2159 
a: Protein-nucleic acid interaction sites b: Protein-ligand interaction sites 
c: True Positive d: Sensitivity 
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Figure 2-3 Predicting Four Categories of Functional Residues by CRESCENDO 

Four case-studies of predicting functional residues are shown; A) active-sites, B) PPI (protein-protein 

interaction), C) PNI (protein-nucleic acid interaction, D) PLI (protein-ligand interaction). SCOP domains 

d1evua4 [206], d1i7kb_ [207], d1k8wa5 [208] and d1ed9a_ [209] were used for A, B, C and D, 

respectively. True positives (TP) are coloured in pink, false negatives (FN, missing residues) in orange 

and false positives (FP) in green. TP and FN are shown as sticks (bold-frame).  

A. Cysteine protease. CRESCENDO predicted 27 residues as functional residues. All three (CYS-314, 

HIS-373 and ASP-396) catalytic residues were correctly identified. ALL-B type ESST (see Table 2-2) 

was used in this figure. FP (green) are clustered around the three real active sites (pink). 

B. Ubiquitin conjugating (UBC) enzyme. 12 residues were predicted by CRESCENDO using ALL-A 

ESST. Five (coloured in pink) were correctly identified among 14 residues annotated as PPI residues. 

Interacting partner (A chain of 1i7k) is placed at the bottom and coloured in gray. The solvent accessible 

surface areas (SASA) for five TP are as follow; ARG-34 (35.64), PRO-90 (4.12), SER-123 (4.74), ALA-

124 (0.55), LEU-125 (72.39). SASA for 9 FN are as follow; PRO-30 (77.26), VAL-31 (24.02), SER-87 

(110.40), GLY-88 (16.05), TYR-89 (0.01), TYR-91 (58.29), GLU-120 (108.68), LYS-121 (113.96), 

TRP-122 (7.20). The SASA is from InterPare [201]. 
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C. Pseudouridine synthase. BIPA [202] annotates 43 residues as PNI. 14 residues were TP (coloured in 

pink) among 20 residues predicted by CRESCENDO. ALL-D was used as ESST. DNA is coloured in 

blue. 

D. Alkaline phosphatase. UniProt annotates 9 residues as metal-binding (METAL), which were all 

correctly identified by CRESCENDO among 30 predicted residues. ALL-B was used as ESST. ZN (zinc) 

and MG (magnesium) are coloured in cyan and blue, respectively. 

 

 

2.2.6 The Effect of Discarding Residues Involved in the Protein-Protein 
Interactions 

I found that the number of functional residues masked and discarded (%Mask) from the 

substitution table does not always guarantee the best performance (SENS) of ESST in 

detecting functional sites using CRESCENDO. The rank correlation between %Mask 

and SENS is 0.45 (see Table 2-6). Hence, it is very evident that masking-models 

outperform non-masking and the ESST of Shi et al. as described above. However the 

category of functional residues does matter and affects the performance. Figure 2-2 

shows the performance of 17 ESSTs on the predictions of 602 active sites of the test-

sets. Regardless of the alignment source, the performance (Z-score and SENS) of table 

B (no-PPI mask) is always better than table A (all mask), which means discarding PPI 

residues is not effective in the recognition performance of enzyme’s active sites. In 

addition, OLD-B also outperforms OLD-J by 5% in the sensitivity, where the difference 

lies in the PPI residues as well. However, in the case of recognizing PPI residues, table 

A of ALL-matrix outperforms table B by 5.2% in terms of TP (Table 2-9). Interestingly, 

table C, which does not mask active sites, ranked as second highest and the performance 

of table D, which masks only active sites, is worse than the random-masking (R) 

substitution table (see Table 2-9). This result indicates that discarding PPI residues can 

increase the recognition performance of PPI residues but does not improve predictions 

of active sites of enzymes. This observation probably arises from the fact that the 

interfacial interactions differ in nature from those residues in catalytic sites and 

therefore masking of catalytic residues has little impact on those in interfaces. 
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2.2.7 Concluding Remarks 

I have shown that discarding functional residues from the calculation of the substitution 

table improves the detection of functional residues when the new substitution table is 

used with CRESCENDO. I considered four categories of functional residues in this 

study (Table 2-1) and found that functional residues can be better predicted when the 

relevant category is discarded from the calculation of the substitution table. However, 

the performance of CRESCENDO for recognizing functional residues depends on the 

extent of amino acid conservation for the functional residues to be sought and how 

strong extra restraints – mainly non-structural – are imposed on the multiple sequence 

alignments from which the restraints are not considered in ESST. According to the 

benchmarking results studied here, enzyme active sites are under strong structural and 

functional restraints; hence they are relatively well predicted compared with amino acid 

residues responsible for protein-protein interaction, which are less conserved and very 

poorly predicted by CRESCENDO. Other interaction-site prediction methods using a 

support vector machine [210] and a random forest algorithm [211] seem to outperform 

CRESCENDO in terms of sensitivity and coverage (see 2.3.4), but direct comparison 

would not be appropriate as the benchmarking datasets are different and CRESCENDO 

is not only designed to predict PPI residues but functional sites in general. None the less, 

the new masking models outperformed non-masking, random masking and the old 

ESST (Shi et al., [197]) not only in terms of true positives but also sensitivity.  

 

As shown in Table 2-8 and Table 2-9, false positives (FPs) and false negatives (FNs) 

are relatively high compared with the number of true positives (TPs). The high FPs are 

expected to arise from the strict definition of functional residues. As shown in Figure 

2-3A, FPs, coloured in green, are clustered around the catalytic triad (CYS-HIS-ASP) of 

the cysteine protease shown here. Some of these FP residues will be important for the 

local architecture of the active site and may even be buried; the substitutions accepted at 

these positions will therefore be restrained. Others will be directly involved in binding 

and positioning the substrate for catalysis. It has been previously shown that 

CRESCENDO identifies such residues in predicting the active site [100]. Furthermore 

the degree of residue conservation is significantly higher the closer the residues are to 



 

 55

the active site and that geometrical proximity to the known active sites can be 

considered to constitute a new environment of ESST [198]. Hence, due to the strict 

definition of functional residues, some of the FPs could not have been recognized as 

functional residues even though their structural and functional importance. A reason for 

some high FNs is that only the first cluster predicted by CRESCENDO were taken into 

account as positive results in the benchmark analysis; however CRESCENDO is 

expected to predict all regions under functional restraints and occasionally those critical 

for protein interactions, allostery, metal binding, post-translational modification and so 

on will be as conserved and score as high or higher than the active site residues. In 

addition, the annotations of functional residues might not be complete, which makes 

both FPs and FNs relatively high. 

 

Other than CRESCENDO, there are several computational approaches to detecting 

possible functional regions of a protein in a fast and low-cost manner. Among them, the 

Evolutionary Trace method (ET), introduced by Lichtarge et al. [212], is widely used 

and very successful in identifying functional regions, for example of SH2, SH3, and 

DNA binding domains. ET differs from CRESCENDO in that it identifies conserved 

residues only on the protein surface and exploits the use of a phylogenetic tree to 

identify local patterns of conservation unique but distinct amongst different branches 

which constitute protein subfamilies. Hence, the performance of ET highly depends on 

the quality of a phylogenetic tree which is determined by a set of sequences to which a 

query protein belongs. If the sequences were recently diverged, the branch-specific 

conservation could not be detected because the substitutions were not accumulated 

enough to construct a reasonable phylogenetic tree. CRESCENDO does not explicitly 

use the phylogenetic tree (although it could well do so), but will also not work well if 

the degree of divergence is low. It will, however, gain from local conservation of buried 

residues in the active site, for example the threonine of the aspartic proteinase catalytic 

triad. It also gains from a careful definition of the expected substitution patterns in any 

local environment and for this the proper treatment of functional residues when deriving 

substitution tables is of critical importance. 
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2.3 Materials and Methods 

2.3.1 Structure Alignments 

New ESSTs were derived from the structure alignments of SCOP families [37]. Baton 

(D.F. Burke, unpublished, see Table 2-11), which is a successor of COMPARER [213], 

was used as a structure alignment program. The domain boundary and classification 

scheme of protein families were adopted from SCOP 1.71 as of this writing. PDB [214] 

was used as a source for protein three-dimensional structures. SCOP class F, which 

contains membrane and cell surface proteins, was not included in the alignment process 

as their amino acids can be in environments which differ from those in the cytoplasm. 

Also, non-canonical SCOP classes, H, I, J, and K, which are coiled-coil proteins, low 

resolution protein structures, peptides, and designed proteins, respectively, were 

removed from the alignment sources. 

 

 

Table 2-11 Lists of Computer Programs and Databases used in this Study 

Category Name Description URL 

Software BATON Structure alignments http://www-cryst.bioc.cam.ac.uk/COMPARER 

 CRESCENDO Detecting functionally 
important residues http://www.bioinf.manchester.ac.uk/crescendo 

 SUBST ESST calculation http://www-cryst.bioc.cam.ac.uk/~kenji/subst 

 JOY Protein structure and 
alignment analysis http://www-cryst.bioc.cam.ac.uk/~joy 

 Kin3DCont Making contour maps in 
kinemage format http://kinemage.biochem.duke.edu/software/kincon.php 

 EXONERATE A generic tool for sequence 
alignment http://www.ebi.ac.uk/~guy/exonerate/ 

 BL2SEQ 
This tool produces the 
alignment of two given 
sequences 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 

 CD-HIT 

A program for clustering 
large protein database at 
high sequence identity 
threshold 

http://bioinformatics.ljcrf.edu/cd-hi/ 

Database CSA Catalytic Site Atlas http://www.ebi.ac.uk/thornton-srv/databases/CSA 

 HOMSTRAD Homologous Structure 
Alignment Database http://tardis.nibio.go.jp/homstrad 

 InterPare 
A database server for 
protein interaction 
interfaces 

http://interpare.net 

 SCOP Structural Classification of 
Proteins http://scop.mrc-lmb.cam.ac.uk/scop 

 UniProt A comprehensive protein 
sequences and annotations http://uniprot.org 
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To guarantee the best alignment quality, the following three filtering conditions were 

applied. (1) Filtering by resolution: NMR structures and structures having resolution 

worse than 2.5Ǻ were not included in the alignment procedures. (2) Filtering by 

sequence identity: For each SCOP family, protein domains were clustered by running 

CD-HIT [215] with sequence identity of 80% or more. Within a cluster, a protein 

structure having the best resolution was selected as the representative. This is to remove 

any bias arising from the majority sequences of proteins in a SCOP family. (3) Filtering 

by sequence length: Within a SCOP family, the average sequence length is maintained 

by removing any domains having sequence below of (1-0.3)*mean-length and above of 

(1+0.3)*mean-length. Single member SCOP families were removed as they can not 

provide multiple alignments for the substitution calculation. 

 

2.3.2 Mapping UniProt and PDB at Residue Level 

UniProt [216] is a central hub for protein sequences, providing rich annotation on 

function and cross-references. However, it does not explicitly provide any three-

dimensional structure information of proteins at the amino acid residue level. Hence, in 

order to harness both UniProt and PDB information, sequences in UniProt have been 

mapped to their corresponding structures in the PDB [55,217,218,219,220,221,222]. In 

January 200712, UniProt decided to reintroduce the initiation methionine (INIT_MET) 

into the full length sequence of UniProt proteins. This is a major change which gives 

rise to an increase in residue serial numbers by one. However at the time of this study 

(2007), no mapping methods, mentioned above, reflected changes of UniProt sequence 

into their mapping procedures, which lead to incorrect mapping between UniProt 

sequences and their corresponding proteins in PDB. 

 

To take UniProt’s upates into account in sequence-structure mapping, I developed a 

mapping protocol, “double-map”, which aligns a sequence of UniProt with that of PDB 

at residue level. Three sequences are required for every PDB chain; 1) one from 

SEQRES record of a PDB file, 2) another from the residue (SEQ) in ATOM record of a 

PDB file, and 3) the third (SP) from the corresponding UniProt entry of a PDB chain. 
                                                 
12 http://www.uniprot.org/news/2007/01/23/release 
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Double-map makes two alignments from the three sequences (so the name “double-

map”). The first is an alignment between SEQ and SEQRES and the second is between 

SEQRES and SP. Using SEQRES as a reference, SP can be aligned with SEQ and the 

locations of UniProt residues can be mapped onto three-dimensional structures. Ideally, 

the alignment between SEQ and SP is enough to locate UniProt residues in PDB. 

However, residues in the sequence (SEQRES) can be absent and sometimes different 

from the coordinate section (SEQ) for various reasons (e.g. the position in space is 

undetermined) and this makes the direct alignment between SEQ and SP incomplete. 

Double-map uses two sequence alignment programs; EXONERATE [223] and 

BL2SEQ of NCBI blast package [64]. If EXONERATE fails to run for a short sequence 

around 10-15 amino acids, BL2SEQ succeeds to complete the alignment. To share the 

mapping data, I developed a web site which is further described in Chapter 6. 

 

2.3.3 Calculation of Substitutions and Distance of Substitution Table 

The program SUBST (http://www-cryst.bioc.cam.ac.uk/~kenji/subst), written by Dr 

Kenji Mizuguchi (unpublished software, see Table 2-11), was used in the calculation of 

substitution table. SUBST takes structural templates as inputs which can be generated 

by JOY [60],  a program to identify the local structural environments of amino acids in 

the structure alignment files. The Euclidean distance between two ESSTs, X and Y, 

( )YXDIST( ⋅ ) was calculated as; 
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of amino acid j to be substituted by k from the ESST of X and Y under the  structure 

environment of i. Note that there are 64 structure environments (4*2*8 from the 

secondary structures, solvent accessibility and H-bonds, respectively) and 21 amino 

acids (Cysteine and half-cystine using one-letter code J and C, respectively). 

 

2.3.4 Benchmarking 

CRESCENDO [100] was used to benchmark new ESSTs based on the predictions of 

four categories of functional residues: 1) catalytic residues of enzyme active sites, 2) 
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residues involved in protein-protein interactions, 3) protein-nucleic acid interactions and 

4) protein-ligand interactions (see Table 2-1 for the source). The divergent score was 

used as it is more sensitive to the environments and it better discriminates functionally 

conserved residues from structurally conserved residues. The CRESCENDO scores (Z-

score) were smoothed and contoured using Kin3Dcont [224]. CRESCENDO returns 

several clusters of predicted residues based on the size of grid points contoured using 

the Z-score. Residues only in the first cluster were used as the predicted residues of 

functional residues in the analysis. The details of the equation can be found in the 

original paper [100]. The P-value of the predicted residues is calculated using a one-

tailed test under the standard normal distribution. 

The performance ESSTs were assessed by measuring sensitivity (SENS), 

coverage (COV) and F-measure. These measurements were calculated based on the 

ratios derived from TP (true positives), FP (false positives), FN (false negatives), and 

TN (true negatives), which are defined as follow. 
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ESSTESST

ESST
+

= , 

)FP()TP(
)TP(COV 
ESSTESST

ESST
+

=  and 
COVSENS
COV*SENS2measureF

+
=−  

 

TP is the number of residues correctly predicted by CRESCENDO. If the residues 

predicted by CRESCENDO are the same as those annotated by the reference database, 

they are counted as being correct. FN is the number of real functional residues where 

CRESCENDO failed to predict. FP is the number of false hits that CRESCENDO 

predicted as functional residues but not actually annotated by the references. TP, FP, FN, 

and TN are exclusively determined by the ESST used in CRESCENDO. 

 

The Spearman’s rank correlation ( ρ ) was calculated as follows; 
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nn
diρ , where id  is the difference between each rank of corresponding values 

and n  is the number of pairs of values 
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Chapter 3  
Three-Dimensional Structural Determinants of Amino 
Acid Conservation in Proteins 

 

Neutral evolution of proteins occurs through the establishment of amino acid 

substitutions in the population at rates that depend on type, local tertiary environment 

and functional interactions of each amino acid. ESSTs (Environment Specific 

Substitution Tables) describe the way that amino acids are substituted as a function of 

their local environments, often defined by secondary structure, solvent accessibility and 

the existence of hydrogen-bonds from side-chains to main-chains or other side-chains. 

In this chapter, I quantify and rank the determinants of amino acid substitutions in the 

three-dimensional structures of proteins by the way they affect the rate of accepted 

substitutions. I show that solvent accessibility is the most important determinant, 

followed by the existence of hydrogen-bonds from the side-chain to main-chain 

functions and the nature of the element of secondary structure to which the amino acid 

contributes. Some of the material in this chapter has been published in Nature Review 

Molecular Cell Biology13  and Biochemistry Society Transactions14. 

 

                                                 
13 Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the evolution of protein 
families. Nat Rev Mol Cell Biol 10: 709-720. 
14 Gong S, Worth CL, Bickerton GR, Lee S, Tanramluk D, et al. (2009) Structural and functional 
restraints in the evolution of protein families and superfamilies. Biochem Soc Trans 37: 727-733. 
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3.1 Introduction 

Although amino acid sequence determines protein three-dimensional structure — 

sometimes with a little help from chaperones — tertiary structure tends to be better 

conserved in evolution than sequence [1,227]. Thus, in homologous families of proteins, 

functions are often retained, and structures are usually very similar, even though 

sequences have diverged. The mantra becomes even more evident in protein 

superfamilies, in which overall sequence similarity can be insignificant but structural 

and functional similarities still provide evidence of distant common ancestry.  

 

Comparisons of homologous proteins show that interaction sites that mediate important 

functions by binding regulatory proteins, nucleic acids and other ligands also provide 

strong evolutionary restraints on amino acid substitutions [69,205,212,228]. These 

cannot be understood at the level of an isolated protein; rather, different proteins and 

sometimes other macromolecules associate to form a multicomponent system that 

serves as a functional unit and provides significant restraints on evolutionary change. In 

insulin, for example, comparative analysis of family members have revealed that amino 

acid substitutions at the interfaces involved in dimer, hexamer and receptor complex 

formation have been under strong restraints since the evolution of bony fishes — only 

the rodent sub-order of histricomorpha, such as the guinea pig and coypu, have 

monomeric insulins [69]. Although the amino acid substitutions leading to the loss of 

ability of insulin to hexamerize in histrocomorpha were first thought to be selectively 

neutral, it is now thought that they were probably selectively advantageous, providing a 

stable storage form, possibly in an environment with a shortage of zinc that prevented 

the use of zinc insulin hexamers as found in other mammals. 

 

For enzymes, it is clear that the local environment of catalytic residues in reaction 

intermediates and transition states must be considered. Strong restraints arise on 

recognition sequences at sites of post-translational modification, of protein-protein 

interactions in adaptor and template interactions and of allosteric effector binding. 

Recently, it has become evident that these restraints can extend to substitution of amino 
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acid residues in the vicinity of protein binding sites but not in immediate contact with a 

ligand [100].  

 

Such comparative analyses of proteins can throw light on these observations by 

focusing on substitutions at topologically equivalent amino acid positions in families 

and superfamilies, and integrating the information into local environment-dependent 

amino acid substitution tables (see section 1.2.2 and Chapter 2). These show that 

identical amino acids are substituted in different ways, depending on the role of an 

amino acid in maintaining protein structure and functional interactions in the protein. 

What then is the nature of the restraints on amino acid substitutions that give rise to 

distinct patterns of protein evolution? In this chapter, I wish to investigate how local 

environments affect the substitution of amino acids and which environments are the 

major determinants of distinct patterns of amino acid substitution. 

3.2 Results  

An ESST (Environment Specific Substitution Table) describes the substitution of amino 

acids as a function of structural environments which restrict the allowable substitutions 

[88]. The combination of environmental descriptors for solvent accessibility, secondary 

structure and side-chain hydrogen-bonding gives 64 matrices for each amino acid in this 

model and each is associated with a distinct pattern of amino acid substitution (see 

section 1.2.2 and Chapter 2 for details). First of all, I measure distances amongst the 64 

ESSTs and then cluster them using the UPGMA algorithm (Unweighted Pair Group 

Method with Arithmetic mean) [229] in order to identify which matrices give rise to 

similar substitution patterns. I also carry out Principal Component Analysis (PCA) 

[230] based on 1) the distance matrix (64*64) and 2) a matrix of substitution profiles for 

all 64 environments over 441 (21*21) possible substitutions (note that cysteine (J) with 

a free sulphydryls group is distinguished from half-cystine (C) which participates in a 

disulfide bridge). Figure 3-1 and Figure 3-2 show the results of clustering and PCA 

analysis, respectively. 
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3.2.1 Solvent accessibility has a major role 

It has long been understood that residue conservation in the solvent inaccessible regions 

is much higher than those that are solvent accessible [88]. Figure 3-1 shows clustering 

of 64 local structural environments (ENVs) with the UPGMA algorithm [231], based on 

distances amongst 64 substitution tables (64*64 distance matrix) to identify the 

structural constraints that determine similar substitution patterns of amino acids. The 

distance between two substitution tables was measured by summing the differences in 

the probability of amino acid substitutions (see section 3.3). In Figure 3-1, the matrices 

for the 64 environments form three distinct clusters: two are distinguished by solvent 

accessibility (clusters 1 and 2 in Figure 3-1), whereas the third is characterized by the 

presence of a positive φ mainchain torsion angle (cluster 3 in Figure 3-1). PCA, in 

Figure 3-2, also divides the 64 ENVs by solvent accessibility, which corresponds to the 

primary principal component (PC1). From a neutral evolutionary point of view, 

substitutions of amino acids that change hydropathy do not in general favour protein 

stability, so they are selected against in evolution. As expected, for all 21 amino acids, it 

is observed that the degree of residue conservation in the solvent inaccessible regions is 

much higher than that of solvent accessible regions (see Figure 3-3). 

 

Even within the cluster of environments having positive φ mainchain torsion angles (see 

section 3.2.3), solvent accessibility divides the environments into two: accessible and 

inaccessible. Solvent inaccessibility thus puts constraints on the acceptance of 

selectively neutral amino acid substitutions during evolution, although it should be 

noted that thermodynamically stable proteins are much more tolerant to mutations 

[232,233]. Based on the clustering pattern of 64 ENVs and other evidence mentioned 

earlier, it is evident that solvent accessibility is the primary structural constraint on 

amino acid substitutions and mutation rates during protein evolution. 
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Figure 3-1 Results of hierarchical clustering of 64 environments 

Trees are constructed on the basis of the 64*64 distance matrix. Environments are shown using five-letter 

code representation: the first letter defines the secondary structure (α-helix (H), β-strand (E), positive 

φ main-chain torsion angle (P) and coil (C)), the second defines solvent accessibility (accessible (A) and 

inaccessible (a)) and the remaining three letters define the existence (upper case) or absence (lower case) 

of hydrogen bonds from a side chain to another side chain (S and s, third letter), to a main-chain carbonyl 

group (O and o, fourth letter) and to a main-chain amide group (N and n, fifth letter) (see also section 

1.2.2 for details). Three major clusters are numbered as 1, 2 and 3 on the nodes from which they branch. 

Around the tree there are four concentric rings, each of which represents a particular structural parameter: 

the first ring represents solvent accessibility, the second ring represents the existence or absence of 

hydrogen bonds from a side chain to a main-chain amide group, the third ring represents the type of 

secondary structure and the fourth ring represents the existence or absence of hydrogen bonds from a side 

chain to a main-chain carbonyl group. The 4 concentric rings highlight the hierarchical clustering of the 

64 environments by showing which amino acid substitution matrices are similar and which local 

environments are the major determinants of the substitution patterns. The trees were drawn using iTOL15 

[234]. The figure is taken from the reference [225] by Worth et al., which I co-authored with. 

                                                 
15 http://itol.embl.de/ 
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Figure 3-2 64 Environments Projected into the Axis of Three Major Principal Components 

A matrix of substitution profiles (64*21*21) was used for the PCA (Principal Component Analysis). Each 

of the ENVs are coloured by A) the solvent accessibility (red: inaccessible, blue: accessible), B) the 

presence (blue) or absence (black) of hydrogen-bond from side-chain to main-chain amides, C) the 

element of secondary structures (red: α-helix, blue: β-strand, black: positive φ main-chain torsion angle, 

green: coil), and D) the existence (red) or absence (black) of hydrogen-bond from side-chain to main-

chain carbonyls. The first, second and third principal component are responsible for 31%, 13%, and 8% 

of the total variance. See Appendix I for the coordinates of 64 environments projected on the PC1, 2 and 

3. Figures were drawn by RGL package of R software16. 

 

                                                 
16 http://www.r-project.org/ 
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Figure 3-3 Probabilities of Residue Conservation by Solvent Accessibility  

The probabilities of residue conservation in the solvent accessible area (blue) are compared with those in 

the solvent inaccessible region for 21 amino acids. From the 64 substitution tables, the probabilities on 

the diagonal axis were averaged for each of the two groups; solvent accessible and inaccessible. Note that 

cysteine and half-cystine are distinguished using one-letter codes J and C, respectively. 

 

3.2.2 Influence of hydrogen bonds on amino acid substitutions 

Each of the three major clusters discussed above is further divided by the presence or 

absence of hydrogen bonds from sidechains to mainchain NH (shown as the second 

concentric ring in Figure 3-1). Hence, in either solvent accessible or inaccessible 

environments, the establishment of hydrogen bonds from sidechains to mainchain NH 

restricts the substitution of amino acids, regardless of the local secondary structure. 

Interestingly, secondary structure (third concentric ring) defined as helix, extended 
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strand, positive φ torsion angle, or coil leads to the formation of clusters within each of 

those defined by mainchain NH.  

 

Amino acids with hydrogen bonds to mainchain CO groups (outermost concentric ring) 

are grouped together within the secondary structure cluster, but the clustering pattern is 

weaker than that of mainchain NH groups. This suggests that the different types of 

hydrogen bonds have hierarchical effects on the substitution patterns of amino acids; 

hydrogen bonds between sidechain and mainchain NH groups are most influential, 

followed by mainchain and mainchain, and then sidechain and mainchain CO groups. I 

further investigated this pattern by averaging the effect of the solvent accessibility and 

then both solvent accessibility and the type of secondary structures. When the effects of 

solvent accessibility and then both solvent accessibility and the type of secondary 

structure are averaged, the clustering retains the same order of hierarchy (see Figure 

3-4A and Figure 3-4B). Especially, it is evident that there is a hierarchy in the influence 

of the eight types of hydrogen bonds from sidechains on amino acid substitutions within 

homologous proteins; 8 ENVs are divided by the existence of a hydrogen-bond from a 

side chain to main-chain amide (N/n) followed by main-chain carbonyl (O/o) (see 

Figure 3-4C and Figure 3-4D). 
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Figure 3-4 Results of hierarchical clustering of 32 and 8 environments.  

A, B | Hierarchical clustering for 32 Environments whereby 64 tables are aggregated into 32 tables by 

averaging the effect of solvent accessibility (A/a). Hence, the tree was constructed based on the 32*32 

distance matrix. C, D | Hierarchical clustering for 8 types of hydrogen bonds from sidechains where 62 

tables are aggregated into 8 tables by averaging the effect of solvent accessibility (A/a) and the elements 

of secondary structure (H/E/P/C). Hence, the distance matrix reflects only the effect of hydrogen bonds 

from sidechains. A | Coloured by the existence (blue) or absence (black) of hydrogen bonds from 

sidechain to mainchain NH. B | Coloured by the element of secondary structures (red: α-helix, blue: β-

strand, black: positive φ mainchain torsion angle, green: coil). C | Coloured by the existence (blue) or 

absence (black) of hydrogen bond from sidechain to mainchain NH. D | Coloured by the existence (red) 

or absence (black) of hydrogen bond from sidechain to mainchain CO.  
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3.2.3 Positive φ torsion angles constrain protein evolution 

In Figure 3-1, matrices for the 64 environments with positive φ torsion angles constitute 

a distinct cluster, whereas other elements of secondary structure are divided by solvent 

accessibility. A positive φ torsion angle can be accommodated by a Gly, which has no 

sidechain, but for most other L-amino acids it leads to disallowed interactions between 

sidechain and mainchain atoms. However, for L-amino acids such as Asp or Asn, 

interactions between the sidechain CO group with the CO of the mainchain peptide 

bond can give rise to relative stabilization of a conformation with a positive φ angle 

[235]. Indeed, Gly represents 63% of total amino acids that have a positive φ torsion 

angle, followed by Asn (8%) and Asp (5%) (see Table 3-1). In addition, within a 

positive φ class, solvent accessible amino acids occur five times more frequently than 

inaccessible residues, whereas the average ratio of accessible to inaccessible residues 

falls within 2.2 for all classes of secondary structure. Hence, the predominance of Gly 

and polar residues in the set of amino acids with a positive φ torsion angle makes a 

distinct substitution pattern and eventually a distinct cluster.  
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Table 3-1 Propensity of Amino Acids within a Positive φ Torsion Angle 

Solvent Accessible Solvent Inaccessible Total 
Amino 
Acids NO. ratio log odd 

ratio1 NO. ratio log odd 
ratio2 NO. ratio log odd 

ratio3 

G 33674 0.604 0.906 8537 0.768 0.993 42211 0.631 0.920 

N 5093 0.091 0.243 296 0.027 0.140 5389 0.081 0.284 

D 3385 0.061 -0.093 181 0.016 -0.097 3566 0.053 -0.037 

K 2245 0.040 -0.314 34 0.003 -0.312 2279 0.034 -0.238 

E 1580 0.028 -0.507 63 0.006 -0.421 1643 0.025 -0.438 

R 1566 0.028 -0.380 59 0.005 -0.347 1625 0.024 -0.314 

S 1487 0.027 -0.377 244 0.022 -0.334 1731 0.026 -0.354 

Q 1227 0.022 -0.327 65 0.006 -0.338 1292 0.019 -0.272 

A 1103 0.020 -0.520 407 0.037 -0.528 1510 0.023 -0.569 

H 1009 0.018 -0.176 83 0.007 -0.288 1092 0.016 -0.152 

Y 699 0.013 -0.443 125 0.011 -0.497 824 0.012 -0.453 

L 680 0.012 -0.697 277 0.025 -0.795 957 0.014 -0.800 

F 554 0.010 -0.461 241 0.022 -0.478 795 0.012 -0.528 

T 366 0.007 -0.948 74 0.007 -0.864 440 0.007 -0.924 

M 321 0.006 -0.473 84 0.008 -0.644 405 0.006 -0.564 

V 252 0.005 -1.014 78 0.007 -1.270 330 0.005 -1.170 

C 213 0.004 -0.313 161 0.014 -0.286 374 0.006 -0.403 

W 163 0.003 -0.598 56 0.005 -0.528 219 0.003 -0.608 

I 136 0.002 -1.157 42 0.004 -1.454 178 0.003 -1.336 

P 33 0.001 -1.955 3 0.000 -2.038 36 0.001 -1.931 

Total 55786 1  11110 1  66896 1  
1: log odd ratio over total accessible amino acids 2: log odd ratio over total inaccessible amino acids 
3: log odd ratio over total amino acids 
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3.2.4 On the frequency of occurrence of local environments 

Analysis of representative structures [193] of protein families shows that ~80% of all 

the amino acids belong to one of 11 (out of 64) local environments (see Table 3-2). 

However none of these 11 local environments includes any hydrogen bonds from 

sidechains to mainchain NH, as expected from the observation that 68.6% of amino 

acids are non-polar and therefore cannot take part in any hydrogen bonds from 

sidechains. Only 8.5% of amino acids have a sidechain with a proton acceptor group 

and can therefore make hydrogen bonds from sidechains to mainchain NH groups, the 

second most important local environmental determinant of substitutions after solvent 

accessibility (See Table 3-3). The 8.5% of amino acids include 10 amino acids (Asp, 

Ser, Asn, Thr, Glu, Gln, Tyr, Met, Cys, His), and among them only Asp, Asn and Ser 

are over-represented compared to their background propensities in the protein dataset. 

This shows that the distribution of amino acids taking part in hydrogen bonds from 

sidechain to mainchain follows the power law distribution – only a small proportion of 

amino acids have an important role in the substitution pattern. 
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Table 3-2 The occurrence of amino acids by 64 local structural environments 

The dataset was downloaded from:  

http://samul.org/ESST/esst/Result.SCOP/ALL/MaskB.tgz 

Rank ENV 
NO. of amino 

acids 
Occurrence (%) 

Cumulative 

percentage 

1 CAson 187,506 18.05 18.05 

2 HAson 162,809 15.67 33.72 

3 Hason 92,903 8.94 42.66 

4 Eason 84,693 8.15 50.81 

5 EAson 71,783 6.91 57.72 

6 Cason 55,480 5.34 63.06 

7 PAson 47,996 4.62 67.68 

8 HASon 43,702 4.21 71.89 

9 CASon 35,158 3.38 75.27 

10 HAsOn 26,983 2.60 77.87 

11 EASon 22,009 2.12 79.99 

12 CAsOn 19,333 1.86 81.85 

13 CAsoN 16,454 1.58 83.43 

14 CASoN 14,863 1.43 84.86 

15 HASOn 12,381 1.19 86.05 

16 Pason 9,837 0.95 87.00 

17 EaSon 8,636 0.83 87.83 

18 CASOn 8,479 0.82 88.65 

19 HasOn 8,311 0.80 89.45 

20 HaSon 7,243 0.70 90.14 

21 EAsOn 6,376 0.61 90.76 

22 HaSOn 5,949 0.57 91.33 

23 CAsON 5,575 0.54 91.87 

24 CaSon 5,381 0.52 92.38 

25 CasOn 4,832 0.47 92.85 

26 EasOn 4,452 0.43 93.28 

27 HASoN 4,166 0.40 93.68 

28 CaSoN 4,072 0.39 94.07 

29 CasON 3,803 0.37 94.44 

30 EASOn 3,775 0.36 94.80 

31 CaSOn 3,678 0.35 95.15 

32 HAsoN 3,589 0.35 95.50 

33 EaSOn 3,557 0.34 95.84 

34 PASon 3,430 0.33 96.17 

35 CASON 3,203 0.31 96.48 

36 CaSON 2,824 0.27 96.75 

37 HAsON 2,651 0.26 97.01 

38 HasON 2,622 0.25 97.26 

39 EAsoN 2,466 0.24 97.50 
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40 EaSoN 2,349 0.23 97.72 

41 EASoN 2,276 0.22 97.94 

42 HaSoN 2,245 0.22 98.16 

43 PAsOn 1,968 0.19 98.35 

44 EasON 1,940 0.19 98.53 

45 CasoN 1,874 0.18 98.71 

46 HaSON 1,868 0.18 98.89 

47 EaSON 1,668 0.16 99.06 

48 HASON 1,658 0.16 99.21 

49 EasoN 1,417 0.14 99.35 

50 HasoN 1,320 0.13 99.48 

51 EAsON 1,098 0.11 99.58 

52 PASOn 770 0.07 99.66 

53 EASON 659 0.06 99.72 

54 PAsoN 602 0.06 99.78 

55 PASoN 499 0.05 99.83 

56 PAsON 352 0.03 99.86 

57 PaSon 320 0.03 99.89 

58 PaSOn 237 0.02 99.91 

59 PasOn 180 0.02 99.93 

60 PASON 169 0.02 99.95 

61 PaSoN 166 0.02 99.96 

62 PasON 148 0.01 99.98 

63 PaSON 128 0.01 99.99 

64 PasoN 94 0.01 100.00 

Total  1,038,965 100  

 

 



 

 74

Table 3-3 The occurrence of eight types of hydrogen bonds from sidechains  

(F: False, T: True, see Figure 1-1 for the ENV code). 

Hydrogen-bonds from sidechains 

ENV 
to other 

sidechain 

to mainchain 

CO 

to mainchain 

NH 

NO. of 

amino acids 

Occurrence 

(%) 

son F F F 713,007 68.63 

Son T F F 125,879 12.12 

sOn F T F 72,435 6.97 

SOn T T F 38,826 3.74 

SoN T F T 30,636 2.95 

soN F F T 27,816 2.68 

sON F T T 18,189 1.75 

SON T T T 12,177 1.17 

Total    1,038,965 100 

The dataset was downloaded from:  

http://samul.org/ESST/esst/Result.SCOP/ALL/MaskB.tgz 

 

3.2.5 Discussion 

In this Chapter, I have shown that the degree of amino acid conservation is most 

affected by the solvent accessibility followed by the presence of hydrogen bonds from 

sidechains to mainchains and between mainchains. However, there are other types of 

non-conventional interactions, which are highly conserved and have important roles in 

protein structures and binding regions [74,97,236]. A further consideration is the extent 

to which the local environment is conserved in homologous families and therefore can 

provide constraints on amino acid substitutions. Analyses of families and superfamilies 

of proteins show that the most crucial packing arrangements of individual sidechains 

begin to differ when two proteins have less than 30% sequence identity due to relative 

movements of equivalent secondary structural elements, but some crucial hydrogen-

bonding interactions are retained at much greater levels of sequence divergence. 

 

It has long been understood that hydrogen bonds play a very important role in the 

stability of a protein structure, and provide restraints on the substitutions of amino acids 

during evolution by neutral drift. Recently, Worth et al. addressed the importance of 

hydrogen-bond potentials from side-chains in the stability of protein structures [97]. 
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They showed that the formation of hydrogen bonds to main-chain amide atoms 

influences conservation of amino acids, with those satisfied buried polar residues that 

form two hydrogen bonds to main-chain amides being significantly more conserved 

than those that form only one or none. Their evidence and my findings provide new 

insights into the roles of networks of hydrogen bonds within the three-dimensional 

structures of proteins. 

 

3.3 Methods 

3.3.1 Environment Specific Substitution Tables 

The Environment Specific Substitution Table [88,89] was derived from the alignments 

of homologous proteins whose three-dimensional structures have been determined. The 

PDB [214] was used as a source for the three-dimensional structures of proteins and 

SCOP [37] for the definition of protein families and domains. For each SCOP family, 

domains were clustered with sequence identity of 80% or more, after pre-processing the 

structure data. SUBST
17

 (Dr Kenji Mizuguchi, unpublished software) was used to 

calculate the ESST. The detailed procedures for making the ESST are explained in our 

recent paper  and the web site
18

   [193]. 

3.3.2 Calculation of Structural Environments of Amino Acids 

JOY
19

 was used to identify the local structural environments of amino acids [60]. JOY 

consists of three supporting programs − SSTRUC, PSA, and HBOND − to annotate 1) 

the elements of secondary structure, 2) solvent accessibility, 3) hydrogen-bonds from 

side chains, respectively. SSTRUC calculates torsion angles within a main-chain to 

assign secondary structure. For the threshold of solvent accessibility, a cut-off of 7.0% 

relative total side-chain accessibility has been applied. HBOND identifies all possible 

hydrogen bonds based on a distance criterion; 3.5Å between donor and acceptor except 

for interactions involving sulphur atoms where 4.0Å is used. 

                                                 
17 http://mordred.bioc.cam.ac.uk/~kenji/subst 
18 http://samul.org/ESST 
19 http://tardis.nibio.go.jp/joy/ 
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3.3.3 Hierarchical Clustering and Principal Component Analysis (PCA) 

The hierarchical clustering analysis is based on the Euclidean distances amongst 64 

environments. The Euclidean distance ( Y) DIST(X ⋅ ), between two environments, X 

and Y, defined as; 
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where 
i

kjX →  and 
i

kjY →  are the probabilities of 

amino acid j to be substituted by k under the environment of X and Y, respectively. 

Hence, the distance matrix is an upper (or lower) triangular matrix of 64*64 dimensions 

with 0 in the diagonal entries. PCA was performed based on either the distance matrix 

or a matrix of substitution profiles for all 64 environments over 441 (21*21) possible 

substitutions. For an ESST, I used ALL-B type (see Table 2-2), which turns out to be 

the best in our benchmarking process in Chapter 2 [193]. For the hierarchical clustering, 

I used the PHYLIP package with UPGMA method as a clustering algorithm [237]. For 

the PCA analysis, “prcomp” function, in stat package of standard R software20, has been 

used. The source code for R is available from http://samul.org/ESST/R.tar.gz. 

                                                 
20 http://www.r-project.org/ 
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Chapter 4  
 
Structural and Functional Restraints on the 
Occurrence of Single Amino Acid Variations in 
Human Proteins 

 

Human genetic variation is the incarnation of diverse evolutionary history, which 

reflects both selectively advantageous and selectively neutral change. In this chapter, I 

catalogue structural and functional features of proteins that restrain genetic variation 

leading to single amino acid substitutions. The variation dataset used in this study is 

divided into three categories: i) Mendelian disease-related variants, ii) neutral 

polymorphisms and iii) cancer somatic mutations. I characterize structural 

environments of the amino acid variants by the following properties: i) side-chain 

solvent accessibility, ii) main-chain secondary structure, and iii) hydrogen bonds from a 

side chain to a main chain or other side chains. To address functional restraints, amino 

acid substitutions in proteins are examined to see whether they are located at 

functionally important sites involved in protein-protein interactions, protein-ligand 

interactions or catalytic activity of enzymes. I also measure the likelihood of amino acid 

substitutions and the degree of residue conservation where variants occur. I show that 

various types of variants are under different degrees of structural and functional 

restraints, which affect their occurrence in human proteome. An initial report of this 

work has been published as the same title of this chapter in Plos One21. 

                                                 
21 Gong S, Blundell TL (2010) Structural and functional restraints on the occurrence of single amino Acid 
variations in human proteins. PLoS One 5: e9186. 
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4.1 Introduction 

The evolution of orthologous proteins occurs through the establishment of amino acid 

substitutions in the population at rates that depend on restraints arising from the need to 

maintain proper three-dimensional structure and to retain functional interactions of each 

amino acid within or between molecules [9,10,225,226]. For example, amino acids in 

the cores of proteins are relatively conserved compared to those in the solvent 

accessible regions [16,97] and catalytic amino acids responsible for enzymatic reaction 

are also well conserved throughout evolution. Hence, mutations tend to be accepted in 

amino acid residues where evolutionary pressure is relatively relaxed and where they 

can remain in the population without selective disadvantage (or advantage). Recently, 

high-throughput DNA sequencing technology has begun to have a major impact on this 

field and is shedding light on genomic sequence variations between human individuals 

[62,239,240,241]. Single nucleotide polymorphisms (SNPs) in protein coding regions 

are of special interest as they may be non-synonymous (nsSNPs), resulting in changes 

in the types of amino acid in the protein products. Indeed, recent analysis of human 

nsSNPs shows that the majority are commonly found and appear to be functionally 

neutral [242]. Thus, it is of interest to examine whether the occurrence of coding 

variations in the human population is equally affected by the factors that restrain the 

substitutions of amino acids observed in divergent evolution of proteins. 

 

One of the consensus agreements from molecular analyses of coding variants is that, 

although most of them are selectively neutral, their occurrence is restrained by various 

factors such as solvent accessibility, type of secondary structure, and presence of side-

chain hydrogen bonding. Compared with benign and neutral variants, disease-related 

variants are more likely to be located in solvent inaccessible regions and tend to change 

the physicochemical properties from those of the wild type amino acids [110,113]. In 

addition, disease-related variants are more likely to be located at conserved residues, 

which are believed to be functionally important [176,243]. However, previous analyses 

have been based on relatively small sub-sets of sequence variants, and have not fully 

taken advantage of the rapidly growing information on protein structure and function. 

Hence, in this era of information deluge from high-speed genome sequencing, high-
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resolution protein structure determination, and enriched annotation on protein functions, 

it is desirable to have large-scale cataloguing of coding variants in the light of structure 

and function of proteins. This will help us understand not only the nature of deleterious 

mutations, but also the evolutionary nature of the occurrence of single amino acid 

variations. 

  

In this chapter, I address structural and functional restraints that shape the occurrence of 

single amino acid variations, which I categorise them into three categories: i) Mendelian 

disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. 

Structural environments of amino acid variants are further characterised by mapping 

sequence positions onto their corresponding three-dimensional structures if available. I 

confirm earlier analyses [110,113] that report nsSNPs occur less frequently at the 

solvent inaccessible region of proteins, whereas disease-related mutations occur much 

more frequently than the average. I also find that cancer somatic mutations and disease-

related variants occur more frequently at amino acids making hydrogen bonds from side 

chains than neutral polymorphisms. Substitution scores and the degree of sequence 

conservation at the variant positions are measured and differences amongst the variant 

datasets are compared. 

 

4.2 Results and Discussion 

4.2.1 Compilation of Amino Acid Variant Dataset 

The variant dataset was compiled from the following sources: 1) Swiss-Prot human 

variants [244], 2) Ensembl human variation database [245], and 3) COSMIC (Catalogue 

Of Somatic Mutation In Cancer) database [140] (see Materials and Methods for details). 

The Swiss-Prot variants are further classified by Mendelian disease-related variants 

(SVD) and polymorphic variants (SVP) according to the original annotations from the 

source. For Ensembl human variations (SAP), only verified SNPs (see section 4.3.1) 

were used in order to ensure an accurate and reliable polymorphic dataset. The 

COSMIC dataset (CSM) differs from the others in that it contains somatic mutations 

observed in various cancer types. The sequence positions of variants from the source 
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data were transferred to UniProt protein sequence level [216] and further mapped onto 

their corresponding locations in terms of three-dimensional structures if available in 

PDB [214]. Table 4-1 shows the number of variants from the source data, variants 

mapped onto UniProt protein level, and PDB level. SVD does not share variants with 

SVP, but does share 232 and 104 variants with CSM and SAP respectively, which are 

less than 1.4% of SVD (see Figure 4-1 for details). CSM shares less than 0.9% either 

with SAP (15/4476) or SVP (31/4476). However, SVP and SAP share ~51% 

(16863/32748) and ~57% (16863/29541) with each other, which is not surprising 

because both represent polymorphic variants. Considering the low percentage of 

overlaps amongst Mendelian disease (SVD), cancer somatic (CSM) and neutral 

polymorphic variants (SAP and SVP), those overlaps are not removed in the analysis 

which I now describe. 
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Table 4-1 Four types of sequence variants and their numbers 

NO. of distinct variants 

Sources Types Abbreviations  
from the source 

mapped to 

UniProt 

mapped to 

PDB 

UniProt Disease SVD 16,776 16,776 4,942 

 Polymorphism SVP 32,748 32,748 2,895 

Ensembl verified SNPs SAP 29,541 28,702 2,024 

COSMIC cancer mutations CSM 5,260 4,476 2,016 

 

 

 
Figure 4-1 A Venn diagram showing the number of overlaps amongst variant datasets 

Four variant datasets (SVD, SVP, SAP and CSM) are from Table 1. (SVD: Mendelian disease-related 

variants, CSM: Cancer somatic mutations, SVP and SAP: Polymorphic variants, see ‘Compilation of 

amino acid variant dataset’ of Results and Discussion section) 
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4.2.2 Local Structural Environments of Sequence Variants 

In order to characterize the local structural environments of amino acid variants where 

three-dimensional structures of proteins are known, the local structural environments of 

amino acids were first defined as suggested by Overington and colleagues [88,89]: 1) 

main-chain conformation and secondary structure, 2) solvent accessibility and 3) 

hydrogen bonding between side chains and main chains. In this framework, there are 64 

distinct environments for a residue from the combination of structural features: four 

from secondary structures (α-helix, β-strand, coil and residue with positive φ main-

chain torsion angle), two from solvent accessibility (accessible and inaccessible), and 

eight (23) from hydrogen bonds to main-chain carbonyl (CO) or amide (NH) or to 

another side chain. Four types of variants were mapped onto PDB structures and 

characterized by their local structural environments (see Supplementary Dataset S1, S3 

and S5 in [238]). In Table 4-2, I quantified the proportions of variants that belong to 

each environmental category and compared them among four variant classes. To give 

background proportions of amino acids for each environmental feature, amino acids 

from representative domains (see Materials and Methods) of SCOP families [37] are 

counted and their proportions are given in Table 4-2. I investigated whether the ratio of 

variants for each environment category could result from the structural restraints that 

shape the occurrence of variants in proteins. 
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Table 4-2 Occurrence (%) of variants by structural environments 

Structural environment Types of variants Background 

Categories types SVD7 SVP8 CSM9 SAP10 SCOP11 

solvent accessibility  a1 42.25 18.45 26.45 19.48 31.21 

hydrogen bonds 

from side chains 

to main-chain 

amides 
T2 10.69 5.79 8.44 5.69 8.55 

 
to main-chain 

carbonyls 
T 19.50 13.01 13.27 13.36 13.63 

 
to other side 

chains 
T 25.58 19.31 21.93 17.04 19.97 

secondary structure  H3 27.98 32.98 22.14 31.58 36.61 

  E4 23.25 20.23 20.26 20.13 21.09 

  P5 9.71 6.40 10.26 6.60 6.45 

  C6 39.06 40.39 47.34 41.69 35.85 

1: inaccessible 2: True (hydrogen bonded)      
3: α-helix 4: β-strand 5: positive φ main-chain torsion angle 6: coil 
7: see Supplementary DatasetS1 of [238], 8: see Supplementary DatasetS3 of [238] 

9: see Supplementary DatasetS7 of [238], 10: see Supplementary DatasetS5 of [238] 

11: see ‘Representative SCOP domains’ of Materials and Methods 
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4.2.2.1 By solvent accessibility 

I observed that Mendelian disease-related variants (SVD) occur twice as often as 

polymorphic variants (SVP and SAP) at solvent inaccessible positions. For cancer 

mutations (CSM), the proportion of variants in solvent inaccessible regions is more than 

that of SVP but less than SVD. If a sequence variant occurs randomly in proteins, the 

probability of being located in a solvent inaccessible region would be close to 31.21%, 

which is the proportion of solvent inaccessible amino acids from the representative 

SCOP domains. As shown in Table 4-2, SVD occur 35% (42.25/31.21 - 1) more than 

expected (P < 10-6) 22, whereas polymorphic variants (SVP and SAP) occur 40% (1 - 

18.45/31.21) less often than expected (P < 10-6) 23. This observation is inline with one 

of the early analyses of the frequency of disease mutations, which showed that 35% of 

551 disease-causing mutations affect buried sites, whereas only 9% of 225 substitutions 

between species do [110]. This also agrees with the finding that for most monogenic 

diseases a single DNA variant, resulting in an amino acid substitution, is responsible for 

the disease by affecting protein stability rather than damaging the protein’s specific 

function directly [112]. Presumably, the differences in the frequency of occurrence by 

mutation types may arise from evolutionary pressure, which restricts the occurrence of 

variants in the core regions of proteins in order to minimize the effects on the stabilities 

of proteins. The mechanism of protein stability studied by using thermodynamics 

measurements (on mutants created by site-directed mutagenesis) revealed that the 

degree of free-energy changes (i.e. ∆∆G) is highly correlated with the location where 

the mutation occurs within three-dimensional proteins – ∆∆G is negatively correlated 

with solvent accessibility [131]. Hence, these indicate that disease-causing mutations 

often affect intrinsic structural features of proteins. 

                                                 
22 P-value is obtained by an approximation via the normal distribution because the total number of 

observations is quite large (n=4942). The exact calculation of P-values is based on the binomial 
distribution; the probability of observing 2088 solvent-inaccessible mutants (2854 within accessible) out 
of 4942 disease-related mutants mapped to PDB, under the null-hypothesis which states the occurrence 
of mutants follows the proportion of inaccessible residues (31.21%).  

23 P-value is obtained by the same method stated above, but observing 534 solvent-inaccessible mutants 
(2361 within accessible) out of 2895 polymorphic variants mapped to PDB (see Table 4-1). 



 

 85

4.2.2.2 By hydrogen-bond capacity 

For three categories of hydrogen-bond types, SVD occur more frequently at amino acids 

making hydrogen bonds (‘T’ in Table 4-2) than do the other variants. CSM also occur 

more frequently than polymorphic variants, but the difference is smaller than that of 

SVD. This observation, together with the ratios of occurrence in the interior/surface 

regions of proteins, clearly shows that amino acid variants are under strong restraints, 

resulting in the observation that they occur less frequently in regions maintaining the 

architectures of protein structures. 

4.2.2.3 By element of secondary structure 

As shown in Table 4-2, compared with the ratios of residues from representative SCOP 

domains and other polymorphic variants (SVP and SAP), SVD and CSM occur less in 

residues in α-helices (H), but more often at residues with positive φ main-chain torsion 

angles (P). Interestingly, almost half of CSM (47.34%) occur in coil regions, 

distinguishing them from other variant datasets (~41.69%). However, this observation is 

probably skewed towards well characterised cancer proteins such as p53 and various 

types of kinase proteins which are dominantly found in the COSMIC dataset. Indeed, 

only 10 UniProt proteins, out of 188 known three-dimensional structures, are 

responsible for 80% of cancer mutations mapped to the PDB. p53 (UniProt accession: 

P04637) alone takes up 27% of 2016 cancer mutations shown in Table 4-1. Therefore, it 

is not reasonable to base any statistical interpretation on the preference of secondary 

structure for cancer mutations on this observation. However for disease-causing 

mutations, my results agree with those of Ferrer-Costa and colleagues [113] who 

showed disease-related SNPs occur less in α-helices but more frequently in β-strands 

than neutral nsSNPs, although differences in the percentages may arise from the 

methods used for defining secondary structure. 

4.2.3 Amino Acid Substitution Scores  

Amino acid substitution models such as PAM [80] and BLOSUM [82] describe the 

degree of substitutions as log-odd ratio values where the positive scores suggest 

commonly occurring and preferred substitutions, whereas the negative scores imply 

very rare substitutions which are disfavoured in nature. Those substitution tables were 
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widely used to assess and predict the effects of nsSNPs [101,113]. An ESST 

(Environment Specific Substitution Table, http://samul.org/ESST) also describes the 

degree of substitution of amino acids, but differs from PAM or BLOSUM by taking into 

account structural environments which restrict the possible and allowable substitutions 

[88,89]. Hence, ESSTs provide more accurate and discriminating measures of 

substitution probabilities in a particular environment in a three-dimensional protein 

structure. Figure 4-2A and Figure 4-2B show box plots of substitution scores from four 

types of variants in the dataset using BLOSUM62 and ESST, respectively. From both 

models, the median substitution scores for SVD and CSM are lower than those of SVP 

and SAP. Substitution scores are further investigated by the local structural 

environments of the variants where they occur in three-dimensional structures of 

proteins. 

 

Figure 4-2 Box plots of substitution scores from four types of variants in the dataset 

Each box plot is derived from the four variant datasets (see Table 4-1) and data are plotted against the 

BLOSUM62 substitution table and ESST in A and B, respectively. The median value is represented as a 

bold vertical line within a box, which represents the interquartile range (IQR) where lower quartile (cut-
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off at the lowest 25% of the data) and upper quartile (cut-off at the highest 25% of the data) are the left 

and right edges of the box. Two vertical lines extended from the left and right hand sides of a box 

represent the smallest (left whisker) and largest (right whisker) non-outlier observations, respectively. 

Any data observation that lies more than 1.5*IQR lower than the lower quartile or 1.5*IQR higher than 

the upper quartile is considered an outlier which is shown as a circle. 
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4.2.3.1 By solvent accessibility 

Figure 4-3 shows box plots of substitution scores by solvent accessibility for the four 

types of variant dataset. Except for SVP, the median values of substitution scores in the 

core regions of proteins are always smaller than those from the surface regions. The 

difference in substitution scores between core and surface region is highly significant 

for both SVD and CSM (P < 10-12) and significant for SVP (P < 10-4), whereas it is not 

significant for SAP (P < 0.78). This suggests that, although variants occur less 

frequently at solvent inaccessible regions, their effect would be detrimental if they 

occurred at the solvent inaccessible regions. In addition, the average proportions of 

variants having negative values of substitution score are 63% and 55% for SVD and 

CSM respectively, whereas the average proportions are less than 40% for SVP and SAP 

(see Table 4-3). 
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Figure 4-3 Box plots of substitution scores by solvent accessibility 

Each of the four datasets is divided into solvent accessible (surface) and inaccessible (core) datasets. The 

representation scheme of a box plot is the same as shown in Figure 4-2. 
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Table 4-3 Ratios of variants having negative and non-negative substitution scores 

Structural environment Types of variants 

SVD SVP CSM SAP 
categories types 

<0 >=0 <0 >=0 <0 >=0 <0 >=0 

A1 0.58 0.42 0.38 0.62 0.51 0.49 0.37 0.63 
Solvent accessibility 

a2 0.70 0.30 0.36 0.64 0.67 0.33 0.41 0.59 

F3 0.62 0.38 0.37 0.63 0.54 0.46 0.38 0.62 to main-chain 
amide T4 0.7 0.3 0.45 0.55 0.67 0.33 0.43 0.57 

F 0.63 0.37 0.37 0.63 0.53 0.47 0.37 0.63 to main-chain 
carbonyl T 0.63 0.37 0.38 0.62 0.64 0.36 0.43 0.57 

F 0.63 0.37 0.37 0.63 0.54 0.46 0.38 0.62 

 
Hydrogen 

bonds from 
sidechains 

to other side 
chains T 0.62 0.38 0.39 0.61 0.56 0.44 0.37 0.63 

H5 0.59 0.41 0.4 0.6 0.52 0.48 0.4 0.6 

E6 0.65 0.35 0.3 0.7 0.58 0.42 0.35 0.65 

P7 0.79 0.21 0.62 0.38 0.68 0.32 0.62 0.38 
secondary structure 

C8 0.61 0.39 0.35 0.64 0.52 0.48 0.35 0.65 

All 0.63 0.37 0.37 0.63 0.55 0.45 0.38 0.62 
1: accessible 2: inaccessible 3: False (no hydrogen bonds) 4: True (hydrogen bonded)  

5: α-helix 6: β-strand 7: positive φ main-chain torsion angle 8: coil 

 

 

 

4.2.3.2 By hydrogen-bond capacity 

Figure 4-4 shows box plots for the distributions of substitution scores by existence or 

absence of hydrogen bonds from a side chain to a main-chain amide (Figure 4-4A), 

main-chain carbonyl (Figure 4-4B), and other side chains (Figure 4-4C). Overall, most 

of the median substitution scores for the residues making hydrogen bonds (NH/CO/SC) 

are smaller or equal to those from non-hydrogen bonding residues (nh/co/sc), which 

implies it would be more deleterious if variants were to occur at amino acids making 

hydrogen bonds. Indeed, the median values of SVD and CSM are negative for all three 

types of hydrogen bonds, although the difference is significant (P < 10-3) only for amide 

(NH/nh) and carbonyl (CO/co) types of CSM dataset. 
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Figure 4-4 Box plots of substitution scores by hydrogen-bond types 

A-C show box plots of substitution scores for the three hydrogen-bond types from a side chain: hydrogen 

bonds to amides (NH/nh), to carbonyls (CO/co), and to other side chains (SC/sc). The existence and 

absence of hydrogen bonds are shown in upper and lower case, respectively. The representation scheme 

of a box plot is the same as shown in Figure 4-2. 
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4.2.3.3 By elements of secondary structure 

In Figure 4-5, substitution scores are plotted by class of secondary structure at the 

position where the variants occur. For SVD (Figure 4-5C) and CSM (Figure 4-5D), the 

median values are less than zero, regardless of secondary structures. Interestingly, for 

all variant types, those that occur at positive φ main-chain torsion angles (P) are always 

negative and they are significantly different (P < 10-5) from the distributions of 

substitution scores for helix (H), beta (E) and coil (C). A positive φ torsion angle can be 

accommodated by a Gly, which has no side chain, but for most other L-amino acids it 

leads to disallowed interactions between side-chain and main-chain atoms. However, for 

L-amino acids such as Asp or Asn, interactions between the side-chain carbonyl group 

with the carbonyl of the main-chain peptide bond can give rise to relative stabilisation 

of a conformation with a positive φ angle [235]. Hence, sequence variants occurring at 

the residues within a positive φ torsion angle could be very deleterious and affect the 

native structures. For a positive φ torsion angle, I found that 55-57% of polymorphic 

variants (SVP and SAP) involve substitutions of amino acids from Gly, Asp and Asn, 

compared to 65-68% of SVD and CSM. This suggests that disease-causing mutations 

affect the native structure more frequently than neutral polymorphic variants (see Table 

4-4). 
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Figure 4-5 Box plots for the substitution scores by the class of secondary structure 

A-D show box plots of substitution scores from four variant dataset (see Table 4-1) which are further 

divided by the element of secondary structures; α-helix (H), β-strand (E), coil (C) and residue with 

positive φ main-chain torsion angle (P). The representation scheme of a box plot is same as shown in 

Figure 4-2. 
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Table 4-4 Percentage (%) of amino acid variants occurring at positive φ main-chain torsion angle 

Wild type Amino 
acids SVD SVP SAP CSM 

G 58.59 42.64 44.06 55.65 
R 6.11 11.68 13.29 6.09 
N 4.20 7.11 7.69 2.17 
A 4.01 3.55 1.40 0.43 
D 3.24 6.60 7.69 6.96 
S 2.86 5.58 4.90 5.22 
C 3.63 1.02 3.50 0.00 
E 2.29 3.55 3.50 4.35 
F 1.91 1.02 1.40 0.00 
M 2.67 0.00 0.00 1.74 
L 2.48 2.54 2.10 1.30 
Y 1.72 1.02 1.40 1.30 
K 0.76 3.05 2.10 3.91 
Q 1.72 2.54 2.10 1.30 
T 1.53 1.02 0.70 0.43 
H 0.95 3.05 2.10 3.48 
V 0.76 1.52 0.70 0.87 
I 0.38 0.51 0.00 3.04 

W 0.19 1.52 0.70 0.00 

P 0.00 0.51 0.70 1.74 
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4.2.4 Amino Acid Property Substitution Matrix 

Substitution scores could be a proxy for the effect of variants, but do not provide any 

details of amino acid substitution types. To investigate this, 20 amino acids are 

classified into six types on the basis of physicochemical properties of amino acids (see 

Material and Methods) and 6 * 6 amino acid property substitution matrices are 

generated by counting the number of substitutions of amino acid by their types. Figure 

4-6 shows amino acid property substitution matrices for the four types of variants in 

which the probability of substitutions is represented as heat maps. Aliphatic amino acids 

(Ala, Ile, Leu, Val and Met) from SVD (Figure 4-6C) and CSM (Figure 4-6D) are 

relatively less conserved than those observed from SAP (Figure 4-6A) and SVP (Figure 

4-6B). In addition, amino acid substitutions from usually negatively charged (Asp and 

Glu) to positively charged (Arg, His and Lys) and aromatic (Phe, Trp, and Tyr) to polar 

non-charged (Cys, Asn, Gln, Ser and Thr) types are more frequently observed in SVD 

and CSM than those observed in SAP and SVP. In terms of substitution patterns, SVP 

and SAP are most similar, followed by SVD and CSM, whereas SVP and SVD are most 

different (see Table 4-5). 
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Figure 4-6 Amino acid property substitution matrices represented by heat maps 

20 amino acids are classified into six types based on their physicochemical properties (see Materials and 

Methods) and the substitution probabilities among the six types are represented as heat maps. A-D are 

from the four variant datasets in Table 4-1. (ALI: aliphatic, ARO: aromatic, NON: polar non-charged, 

POS: positively charged, NEG: negatively charged, and NEU: neutral) 
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Table 4-5 Distance matrix of amino acid mutations from the four types of variants 

 CSM SAP SVD 

SAP 31.11   
SVD 26.72 43.86  

SVP 32.21 6.54 45.26 

 

 

4.2.5 Degree of Sequence Conservation at the Variant Locations 

I investigated the relationship between the variant types and the degree of sequence 

conservation at the locations where variants occur. Figure 4-7 shows box plots for the 

degree of sequence conservation measured by the Shannon’s entropy (see Materials and 

Methods) from the four types of variants. In Figure 4-7A, it is very clear that Mendelian 

disease-related variants (SVD) occur at positions where amino acids are relatively 

conserved compared with those from polymorphic datasets (SVP and SAP) and cancer 

somatic mutations (CSM) with significant differences in the distribution (P < 10-11). 

From Table 4-2, it is observed that the frequency of solvent inaccessible residues is 

much higher for SVD than those from SVP, CSM and SAP. Hence, the lower sequence 

entropy of SVD might arise from the relatively larger fraction of solvent inaccessible 

residues compared with the other variants, as solvent inaccessible residues are more 

conserved than solvent accessible residues. To address this issue, variants are classified 

into either solvent accessible (Figure 4-7B) or inaccessible environments (Figure 4-7C) 

and their sequence entropies were measured differently. I found that, regardless of their 

solvent accessibility, SVD occur at relatively conserved regions compared with variants 

from SVP, SAP and CSM (P < 10-7 and P < 0.0496 from Figure 4-7B and Figure 4-7C, 

respectively). Interestingly, as shown in Figure 4-7B and Figure 4-7C, the median 

entropy value of CSM is higher than that of SVP and SAP, even though the distribution 

is not significantly different from that of polymorphic variants (P-values are <0.8071, 

<0.7032 and <0.1240 from Figure 4-7A, B and C, respectively). This observation 

contrasts with a current report that cancer-related mutations are frequently found at 

evolutionarily conserved amino acid residues whereas polymorphic variants occur in 
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relatively less conserved regions [246]. The conflict in this observation probably arises 

from the following reasons; i) differences in the nature of the ‘cancer datasets’ – in this 

study the COSMIC database was used whereas the report is based on curated lists of 

cancer mutations selected from the literature, ii) the use of different conservation 

measurements – Shannon’s sequence entropy in this study whereas combinations of 

percentage identity and sequence-entropy by Talavera et al. iii) differences in the source 

and method of multiple sequence alignment – SCOP and Baton in this study whereas 

Ensembl-Compara [247] and MUSCLE [248] by Talavera et al.. 

 

 

 

Figure 4-7 Box plots for the degree of sequence conservation measured by Shannon’s entropy 

Sequence entropies (see Material and Methods) from the four variant datasets (Table 4-1) are shown as 

box plots in A. Sequence entropies are calculated separately according to solvent accessibility of the 
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variants defined by where they occur in three-dimensional structures: solvent accessible (B) and 

inaccessible (C). The representation scheme of the box plots is the same as shown in Figure 4-2. 

 

4.2.6 Functional Restraints 

Amino acids responsible for specific functions of proteins tend to be conserved 

throughout evolution and are likely to be under strong restraints. Hence, mutations that 

do not improve or change function in a way that confers any selective advantage to the 

organism would likely be deleterious. To test this, I investigated variants occuring at 

amino acid residues responsible for protein function. Eight functional feature types are 

used, defined by UniProt annotations − ACT_SITE, BINDING, CA_BIND, DISULFID, 

DNA_BIND, LIPID, METAL, and NP_BIND (see Material and Methods for details) − 

and protein-protein interaction information from the PICCOLO database, 

http://mordred.bioc.cam.ac.uk/piccolo/piccolo.php (Bickerton GR, Higueruelo AP, and 

Blundell TL (2010) PICCOLO: comprehensive, atomic-level characterization of 

structurally characterized protein-protein interactions. manuscript in preparation). 

Table 4-6 shows frequencies of functional residues having a sequence variant at such a 

position. Polymorphic variants (SVP and SAP) occur in less than 1% of functional 

residues, whereas Mendelian disease-related variants (SVD) occur from 1.47% for 

calcium-binding residues (CA_BIND) up to 10.47% for residues interacting with a 

metal ion (METAL). Cancer somatic mutations (CSM) occur less frequently than SVD 

for all functional categories, but more frequently than polymorphic variants except for 

two categories: BINDING (binding sites for chemical groups) and CA_BIND (calcium-

binding regions). 
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Table 4-6 Proportion (%) of functional residues having at least one sequence variant 

Types of variants Functional 

categories1 SVD2 SVP3 CSM4 SAP5 

DNA_BIND 4.65 0.31 2.00 0.29 

DISULFID 6.52 0.10 0.20 0.13 

NP_BIND 3.91 0.25 1.39 0.32 

METAL 10.47 0.21 1.16 0.18 

BINDING 10.43 0.52 0.29 0.63 

ACT_SITE 7.24 0.30 0.72 0.36 

CA_BIND 1.47 0.54 0.22 0.51 

PPI 3.53 0.83 2.15 0.51 
1:see Materials and Methods for definitions 
2: see Supplementary DatasetS2 of [238], 3: see Supplementary DatasetS4 of [238] 

4: see Supplementary DatasetS8 of [238], 5: see Supplementary DatasetS6 of [238] 

 

 

In order to illustrate these features, I examined a number of specific cases. As an 

example, Figure 4-8 exemplifies amino acid variants occurring at functional residues 

mentioned above from the following four UniProt entries: O14832, P00533, P24941, 

and O00204 for A-D, respectively. In Figure 4-8A, there are 17 sequence variants 

annotated by UniProt, one of which (VAR_050528) is annotated as polymorphic (SVP) 

and the rest are disease-related variants (SVD) responsible for Refsum disease (RD) 

[249,250,251]. Amongst 16 disease-related variants, two occur at metal-binding 

(METAL) and two at ligand-binding (BINDING) residues, which are directly 

responsible for the disease by inducing the loss of activity for the protein [28,249,251]. 

Figure 4-8B illustrates the locations of cancer somatic mutations occurring at the kinase 

domain of EGFR (Epidermal Growth Factor Receptor). There are 10 ATP-binding sites 

and one active site residue of which 8 ATP-binding sites are reported amongst somatic 

mutations responsible for lung cancer. Figure 4-8C and Figure 4-8D show variants in a 

protein kinase 2 (CDK2) and an alcohol sulfotranferase (SULT2B1), respectively. Two 

polymorphic variants (Y15S and V18L) occur amongst 19 ATP-binding residues in 

Figure 4-8C and only one polymorphic variant (V225I) out of 53 adenosine diphosphate 

binding residues in Figure 4-8D. The full list of all individual variants mentioned above 
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is available as Supplementary DatasetS2, S4 and S6 in an initial report of this work in 

PLoS ONE [238]. 

 

 

Figure 4-8 Examples of amino acid variations from the four datasets 

UniProt feature annotations are transferred onto three-dimensional structures of proteins by aligning 

UniProt sequences with their corresponding PDB sequences using double-map method [193] (see 

Materials and Methods): O14832 with 2a1x in A, P00533 with 2itv in B, P24941 with 1gij in C, and 

O00204 with 1q1q in D. The regions not shown in the alignments are indicated with blue arrows. Amino 

acid variants are shown within boxes of grey background in the alignments and as bold-frame in the 

structure images. Metals and ligands are illustrated as spheres. Metal-binding (METAL), ligand-binding 

(BINDING), nucleotide phosphate-binding (NP_BIND), and active sites (ACT_SITE) residues are 

coloured in magenta, orange, red and cyan, respectively, both in the alignments and structure images. All 

structure images and alignments are drawn using PyMOL [94] and Jalview [252], respectively. (AKG: 2-

Oxyglutaric acid, Fe: Iron ion, ANP: Phosphoaminophosphonic acid-adenylate ester, 2PU: 1-(5-oxo-

2,3,5,9b-tetrahydro-1h-pyrrolo[ 2,1- a]isoindol-9-yl)-3-(5-pyrrolidin-2-yl-1h - pyrazol-3-yl)-urea, A3P: 

Adenosine-3'-5'-diphosphate, NHE: 2-[n-cyclohexylamino] ethane sulfonic acid)  
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4.2.7 Concluding Remarks 

In this chapter, I have shown that the occurrence of amino acid variants is affected by 

the structural and functional restraints. Based on the frequency of their occurrence in 

particular structural environments, disease-related variants occur more often at solvent 

inaccessible regions, and at amino acid residues making hydrogen bonds compared with 

polymorphic variants. Overall, substitution scores of Mendelian disease and cancer 

somatic mutations are lower than those of polymorphic variants, suggesting deleterious 

and harmful effects when they occur. However, I observe that there are polymorphic 

variants that have very low substitution scores, especially variants changing the 

physicochemical properties of amino acids. Indeed, the presence of polymorphic 

variants (SVP and SAP) in the dataset does not necessarily mean they are neutral with 

respect to the phenotypes. There are likely to be variants related to a certain disease type, 

which have not been identified yet. However, I have not attempted to predict sequence 

variants causing deleterious effects on protein structures and depriving functions, which 

eventually lead to a specific disease, as this has been addressed extensively by others 

[165,167,168,170,175]. See section 1.3.3 for computational methods predicting disease-

related mutations. Rather, I focused on the distributions and occurrences of amino acid 

variants in terms of structural and functional features of proteins.  

 

In terms of amino acid conservation score, I showed that variants responsible for 

Mendelian disease are more frequently observed at rather conserved regions compared 

with cancer mutations and polymorphic variants. To quantify conservation score, 

Shannon’s sequence entropy, which basically measures relative frequency of symbols 

(amino acids), was used to measure conservation score in this study. However, there are 

many other measurements and even there are some variations within the same entropy-

based scoring method. See [253] for in-depth review on various residue conservation 

methods. One of the short comings of entropy-based methods is that most of these 

scoring schemes do not take account of gaps (e.g. columns dominated by gaps would 

score as more conserved). In this study, I did not measure entropy if gaps occur in more 

than 50% of the sequences at the alignment position. Even with this drawback, I believe 
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Shannon’s sequence entropy method can reveal the relative degree of amino acid 

conservation amongst the four variation data sets analysed in this study. 

 

4.3 Materials and Methods 

4.3.1 Variants Data Source 

SVD and SVP are defined by annotations of UniProt human sequence variations 

(http://www.uniprot.org/docs/humsavar.txt, release: 57.5) where types of amino acids 

variants are classified either disease, polymorphism or unclassified [244]. For SVD, 

variants are further filtered out by removing non-Mendelian diseases which have not 

been assigned any MIM number from the OMIM (http://www.ncbi.nlm.nih.gov/omim/) 

database and any disease names related with cancers from the following key tokens: 

cancer, tumor, neoplasia, leukaemia, lymphoma, melanoma, carcinoma, blastoma, and 

cytoma. CSM is taken from the COSMIC (Catalogue of Somatic Mutation in Cancer, 

http://www.sanger.ac.uk/genetics/CGP/cosmic/, version: 42) database [140] from which 

mutations result in amino acid changes were taken and SAP is from the Ensembl human 

variation database (http://www.ensembl.org, database version: 54_36p) [245] which 

compiles SNPs (Single Nucleotide Polymorphisms) mainly from dbSNP database 

(http://www.ncbi.nlm.nih.gov/projects/SNP/) [128]. From Ensembl human variations, 

only verified SNPs have been used; those genotyped and validated by the international 

HapMap project [151]. Amino acid variants of CSM and SAP were transferred onto the 

positions of their corresponding UniProt sequence using the sequence alignment 

program, BL2SEQ, of NCBI blast package [64] if necessary. 

 

4.3.2 Representative SCOP Domains 

SCOP 1.71 was used to define representative domains by applying the following 

conditions: 

1) NMR structures and proteins having resolution worse than 2.5Ǻ were excluded. 

2) Protein domains were clustered for each SCOP family by running CD-HIT [215] 

with sequence identity of 80% or more.  
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3) Within a SCOP family, the average sequence length is maintained by removing 

any domains having sequence below of (1-0.3)*mean-length and above of 

(1+0.3)*mean-length.  

4) Within a cluster, a protein structure having the best resolution was selected as a 

representative. 

Non-canonical SCOP classes (H, I, J, and K,) and membrane and cell surface proteins 

(F) were not included in the process described above. 

 

4.3.3 Mapping the Location of Variants onto 3D Structure 

To locate the position of a sequence variant in the three-dimensional structure, variants 

mapped onto UniProt sequences were further transferred onto three-dimensional 

structures using double-map [193] which aligns a sequence of UniProt to its 

corresponding PDB structure at residue level. In short, double-map makes two 

alignments from the three sequences. The first alignment is between a sequence in 

atomic coordinate record (SEQATM) and SEQRES record of a PDB file. The second is 

between SEQRES and its corresponding UniProt sequence (SP). Using SEQRES as a 

reference SP can be aligned with SEQATM and the locations of UniProt residues can be 

mapped onto three-dimensional structures. Detailed description of the mapping 

procedure is available from section 2.3.2 and an online database is implemented to share 

pre-run data, which is described in Chapter 6. In parallel, there are public resources 

which also provide genetic variations mapped onto three-dimensional structures of 

proteins [142,184,254,255].  

 

4.3.4 Identifying Local Structural Environment of Amino Acids 

JOY [60] was used to identify the local structural environments of amino acids. JOY 

consists of three supporting programs − SSTRUC, PSA, and HBOND − to annotate 1) 

the elements of secondary structure, 2) solvent accessibility, 3) hydrogen bonds from 

side chains, respectively. SSTRUC, a successor of DSSP [256], calculates torsion 

angles within a main chain to assign secondary structure. For the threshold of solvent 

accessibility, a cut-off of 7.0% relative total side-chain accessibility was used. HBOND 
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identifies all possible hydrogen bonds based on a distance criterion; 3.5Å between 

donor and acceptor except for interactions involving sulphur atoms where 4.0Å is used. 

 

4.3.5 Amino Acid Substitution Scores 

For variants at the UniProt protein sequence level, BLOSUM62 [82] was used to get the 

substitution score for a corresponding variant. However, substitution scores for the 

variants mapped onto three-dimensional structures were from an Environment Specific 

Substitution Table (ESST) [88,89], which corresponds to the local structural 

environment for a variant. I used ALL-B types of ESST, which has proved to be the 

best approach in previous benchmarking tests [193]. The detailed procedure of making 

ESSTs is explained in Chapter 2 and the ESST web site (http://samu.org/ESST). ESST 

can be generated in an automatic fashion by the recently developed computer software, 

Ulla [93]. 

 

4.3.6 Statistical Analysis 

The Wilcoxon rank sum test was used to calculate significant differences in the 

distribution of substitution scores between two groups. I used wilcox.test of stats 

package of R [257] with a two-sided test option. 

 

4.3.7 Classification of Amino Acid Types 

20 amino acids are classified into 6 classes by their physicochemical properties as 

follows: 

1) Aliphatic (ALI): Ala, Ile, Leu, Val and Met 

2) Aromatic (ARO): Phe, Trp, and Tyr 

3) Polar non-charged (NON): Cys, Asn, Gln, Ser and Thr 

4) Positively charged (POS): Arg, His and Lys 

5) Negatively charged (NEG): Asp and Glu 

6) Neutral (NEU): Gly and Pro 
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4.3.8 Measuring Distances from Substitution Matrices 

The Euclidean distance ( Y) DIST(X ⋅ ), between two amino acid property substitution 

matrices, X and Y, defined as; 
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kjkj YX where kjX →  and kjY →  are the probabilities of 

amino acid category j to be substituted by category k from the variant dataset X and Y, 

respectively. 

 

4.3.9 Sequence Entropy 

To measure the degree of sequence conservation, sequence entropy was calculated for 

each alignment position within a protein family having at least three sequences. Entropy 

was not measured if gaps occur in more than 50% of sequences at the alignment 

position; otherwise, gaps were treated as another symbol. Shannon’s entropy equation 

[258] was formulated as below: 
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where pi is the frequency of symbol i (either an amino acid or a gap) at the alignment 

position. 

 

4.3.10 Definitions of Functional Residues 

Variants taken from the four types of dataset were examined to see whether they occur 

at protein residues responsible for specific functions. Functional residues were defined 

if they were annotated by UniProt functional features (from ‘FT' lines) or known to 

maintain protein interactions detected by PICCOLO 

(http://mordred.bioc.cam.ac.uk/piccolo/piccolo.php; Bickerton et al. 2010; In 

Preparation) which is an in-house database of protein-protein interactions between every 

pair of chains from protein structures in the PDB. Eight types of UniProt functional 

features were used: 

1) ACT_SITE: amino acid(s) involved in the activity of an enzyme  
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2) BINDING: binding site for any chemical group (e.g. co-enzyme, prosthetic 

group, etc.)  

3) CA_BIND: extent of a calcium-binding region 

4) DISULFID: disulfide bonds 

5) DNA_BIND: extent of a DNA-binding region 

6) LIPID: covalent binding of a lipid moiety 

7) METAL: binding site for a metal ion 

8) NP_BIND: extent of a nucleotide phosphate-binding region 
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Chapter 5  
Structural and Functional Analysis of Amino Acid 
Variants identified in Type 1 Diabetes Genome-Wide 
Association Studies 

 

Understanding the genetic basis of a phenotype has long been an attractive, yet 

challenging, subject of study for molecular biologists. Indeed, interrogation of the 

genetic make-up responsible for a certain disease phenotype has been a major focus in 

the post-genomic era. Recent advances in next-generation sequencing technologies are 

producing large amounts of genetic data in a very fast and large-scale manner, and this 

is revolutionizing the way we study genotype-phenotype relationship. With the help of a 

statistical framework comprising linkage disequilibrium and genome-wide association 

studies, we can now start to understand disease aetiology underlying common diseases 

such as cancer and diabetes. However, such statistical analyses do not provide 

molecular and physiological details of disease susceptibility, which is required in order 

to confirm associations between genetic make-up and disease aetiology. In the previous 

chapter, I characterized structural and functional features of amino acid variants in 

human proteins from various data sources comprising neutral polymorphic variations, 

somatic mutations and disease-associated variants. In this chapter I focus on a specific 

example of a complex disease, type 1 diabetes, and describe structural and functional 

analyses of amino acid variants identified from genome-wide association studies of type 

1 diabetes. 
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5.1 Introduction 

Early analyses of protein structure showed that single amino acid substitutions or 

mutations are often disease associated [111]. Most monogenic diseases, such as sickle 

cell disease and severe combined immunodeficiency (SCID), appear to result from a 

single DNA variant resulting in an amino acid substitution, which affects protein 

stability rather than impairing protein function directly [112] (see 1.3.1 for details). 

Therefore, methods that predict the effects of mutations on protein stability are useful 

for identifying possible disease associations [115,160]. Indeed, several computer 

programs successfully identify protein mutations that affect protein stability 

[161,162,163,165,167,170,174,259]. However, for most common diseases, such as 

cancers, heart diseases, and diabetes, where multiple genes and alleles play a role in 

complex phenotypes or traits, pinpointing the genetic loci underlying diseases has never 

been easy and has become even harder, especially when genetic variants responsible for 

disease aetiology need to be identified. With the help of recent advances in sequencing 

technologies [123,260] and analytical frameworks (see [126,261] for review), we are 

now beginning to see successful case studies, identifying the genetic loci underlying the 

aetiology of complex diseases such as type 1 [262,263] and 2 diabetes [264,265], 

asthma and coronary heart disease [124,266]. More recently, systematic resequencing of 

the cancer genome has revealed genetic changes that may be responsible for lung, breast 

and colorectal cancer [122,158,159,267]. Lists of genetic loci associated with disease 

susceptibility from the published studies are deposited in databases such T1Dbase24 

[149], COSMIC25 [140], EGA26, and a Catalog of Published Genome-Wide Association 

Studies 27  of NHGRI (National Genome Research Institute). Therefore, our 

understanding of the genetic basis of complex diseases is beginning to improve with the 

help of large-scale genome-wide association studies (GWAS) and high-throughput 

sequencing technologies, although more molecular and physiological studies of genetic 

variants need to follow in order to confirm association with disease aetiology.   

 

                                                 
24 http://www.t1dbase.org 
25 http://www.sanger.ac.uk/genetics/CGP/cosmic/ 
26 http://www.ebi.ac.uk/ega 
27 http://www.genome.gov/gwastudies/ 
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In Chapter 4, I described structural and functional restraints that shape the occurrence of 

single amino acid variations in neutral polymorphisms, cancers and Mendelian diseases. 

In this chapter, I focus on an example of a complex disease—type 1 diabetes (T1D)—

and present functional and structural analyses of genetic variations related to the disease. 

The genetic variations, which are presumably responsible for T1D, are provided by the 

research group of Professor John Todd28, Cambridge Institute of Medical Research 

(visit http://www.t1dbase.org for details). Many genetic regions (e.g. chromosomal loci) 

associated with T1D have been identified through genome-wide association analysis; 

testing a number of common SNPs to see if different alleles show different frequencies 

in a large number of cases and controls. All regions contain many variants, of which 

only a minority will show association with T1D; those that lie on the same ancient 

haplotypes as the causal variant(s). Seven of these regions were chosen for sequencing 

in a selection of 80 samples (a mixture of cases and controls) to assemble a more 

complete catalogue of variation, and were further assessed statistically for association 

with T1D using an imputation method.  

 

Here, I present an analysis of 355 SNPs—two lead to base ‘deletion’, so are omitted 

from this analysis—from which I characterize functional and structural environments of 

the amino acid variants by mapping their locations within UniProt and PDB, 

respectively, using Ensembl API 29  and double-map [238] introduced in Chapter 2. 

Sequence variants and their analyses described in this chapter are available from 

http://samul.org/T1D/353snps. 

5.2 Results and Discussions 

5.2.1 Overview 

The 353 SNPs are from 51 genes (or contigs) spanning six chromosomes of which 

chromosome 12 and 16 account for almost 60 % (210/353) (see Table 5-1). Among 353 

SNPs, 192 and 34 SNPs are mapped onto 129 UniProt and 225 PDB entries, 

respectively. Not all the 353 SNPs could be mapped onto their equivalent amino acid 

                                                 
28 http://www-gene.cimr.cam.ac.uk/todd/index.html 
29 http://www.ensembl.org/info/docs/api/index.html 
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positions within their corresponding proteins and further to the known three-

dimensional structure for the following two reasons; i) 161 SNPs (353 – 192) are 

located within non-protein coding regions, and ii) 158 SNPs (192 – 34) are within the 

UniProt proteins which do not have their three-dimensional structures available from 

the PDB at the time of this analysis. Comparative modelling can help increase the 

number of SNPs that can be analysed within the structure space, but those SNPs were 

only analysed in term of their equivalent positions within close homologs having known 

three-dimensional structures.  

 

Table 5-1 353 T1D-related SNPs from 51 genes30 

NO of distinct SNP within 

Chromosome Gene or contig 
name Ensembl gene 

(ENSG) UniProt PDB 

4 KIAA1109 34 34 0 
16 CLEC16A 28 9 0 
16 CIITA 28 18 0 
12 ANKRD52 22 10 0 
2 IFIH1 15 13 6 

10 IL2RA 14 8 3 
12 ERBB3 13 10 4 
12 SUOX 10 4 0 
12 STAT2 10 5 1 
12 IKZF4 9 2 0 
2 KCNH7 9 8 0 

10 PFKFB3 8 5 4 
18 CD226 8 4 0 
12 PAN2 8 4 0 
10 RBM17 8 2 0 
12 RAB5B 8 0 0 
12 ESYT1 8 7 0 
12 SLC39A5 7 6 0 
2 CTLA4 7 1 0 

12 SMARCC2 7 3 0 
12 OBFC2B 7 0 0 
12 CDK2 7 2 2 
12 RNF41 6 1 1 
2 FAP 6 6 6 

12 COQ10A 6 2 0 
4 ADAD1 5 2 0 

                                                 
30 see http://samul.org/T1D/353snps for details 
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18 DOK6 5 1 0 
12 APOF 5 4 0 
12 CS 5 3 0 
10 RP11-414H17.1 5 0 0 
2 ICOS 4 1 0 

12 CNPY2 3 2 0 
12 AC034102.1 3 0 0 
12 MYL6 3 3 1 
2 GCA 3 1 1 
4 IL21 3 1 1 
4 AC097533.2 3 0 0 

10 7SK 3 0 0 
4 IL2 3 1 1 

12 SILV 2 2 0 
12 PA2G4 2 2 2 
12 RPS26P20 2 1 0 
16 DEXI 2 0 0 
12 ZC3H10 2 1 0 
2 GCG 2 2 0 
2 5S_rRNA 1 0 0 

10 AL137186.1 1 1 1 
12 IL23A 1 1 1 
2 AC007750.1 1 1 1 

12 DGKA 1 0 0 
4 AC097533.1 1 0 0 

Total  353 192 34 
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Table 5-2 shows the number of SNPs classified by the nature of their consequences. 

40% (142/353) are located within intronic regions, and 29% (102/353) in non-

synonymous (ns) coding, while two result in stop-gained codon responsible for 

premature forms of gene products from IL2RA (interleukin-2 receptor alpha chain) and 

COQ10A (coenzyme Q-binding protein COQ10 homologue A); from these I selected 

several interesting SNPs, which are further described below. From the 100 nsSNPs in 

Table 5-2, 41 SNPs are mapped onto UniProt protein residues where the same locations 

are already identified as variation sites by dbSNP [128]. Interestingly, it is reported that 

two of them are associated with T1D according to UniProt annotations; these two are 

further analysed. 

 

Table 5-2 Numbers of SNPs grouped by their consequence types31 

Number of distinct SNPs 

SNP types Ensembl transcript 

(ENST) 
UniProt PDB 

Intronic 142 0 0 

3’ UTR32 138 0 0 

Non synonymous coding (nsSNPs) 102 100 13 

Synonymous coding 90 90 21 

5’ UTR 34 0 0 

Coding region not found 27 0 0 

Error33 7 0 0 

Stop gained 2 2 0 

Total 35334 192 3435 

 

 

                                                 
31 See http://samul.org/T1D/353snps/gene/all/enst for details 
32 Untranslated Region  
33 Coding sequence does not seem to start with the initiation codon (AUG) 
34 Note that a SNP could result in more than one consequence type mainly by alternative splicing (one 

gene many transcript relationship)  
35 34 SNPs are successfully mapped onto their corresponding location within the known three-

dimensional structures; the remaining variants (192 - 34) have no structure information available from 
PDB 
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In order to characterise functional features of the amino acid variants from 100 nsSNPs, 

UniProt annotations36 were investigated, of which 26 feature types have been used in 

this analysis (see section 5.3.3 for details). I found 45 SNPs are within the amino acids 

annotated as ‘VAR_SEQ’, three for ‘REGION’, two for ‘TRANSMEM’ and one for 

‘ZN_FING’ (see Table 5-3); these variants are also investigated further. 

 

 

Table 5-3 Functional annotations of 100 non-synonymous SNPs  

(for details, visit http://samul.org/T1D/353snps/gene/all/uniprot/NON_SYNONYMOUS_CODING) 

Annotation Definition NO. of SNP 

N/A Annotations not available 73 

VAR_SEQ 

Description of sequence variants produced by alternative splicing, 

alternative promoter usage, alternative initiation and ribosomal 

frameshifting 

45 

REPEAT Extent of an internal sequence repetition 6 

COMPBIAS Extent of a compositionally biased region 4 

REGION Extent of a region of interest in the sequence 3 

TRANSMEM Extent of a transmembrane region 2 

SIGNAL Extent of a signal sequence (prepeptide) 2 

PEPTIDE Extent of a released active peptide 1 

ZN_FING Extent of a zinc finger region 1 

PROPEP Extent of a propeptide 1 

CARBOHYD Glycosylation site 1 

 

 

Amino acid substitution models such as PAM [80] and BLOSUM [82] describe the 

degree of substitutions as log-odd ratio values where the positive scores suggest 

commonly occurring and preferred substitutions, whereas the negative scores imply 

very rare substitutions which are disfavoured in nature. An ESST, which I have 

described in Chapter 2, also addresses the degree of substitution of amino acids, but 

differs from PAM or BLOSUM by taking into account structural environments, thus 

conferring a more detailed description of substitution patterns. Figure 5-1 shows box 

plots of substitution scores from the 100 nsSNPs mapped onto UniProt (see Table 5-2), 

measured by ESST, PAM and BLOSUM matrices. The median substitution score is 0 

for both PAM and BLOSUM, whereas it is one for ESST. 23% (3/13), 41% (41/100), 
                                                 
36 http://www.expasy.ch/sprot/userman.html#FT_line 
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and 47% (47/100) of substitutions are negative, according to ESST, PAM and 

BLOSUM, respectively; these are further analysed below. 

 

 

Figure 5-1 Box plots of substitution scores for the 100 non-synonymous SNPs 

Substitution scores for the 100 nsSNPs (see Table 5-2) are estimated by ESST, PAM70 and BLOSUM62, 

shown in the Y-axis. The representation scheme of a box plot is the same as for Figure 4-2. ALL-B types 

of ESSTs were used; this has proved to be the best approach in previous benchmarking tests as described 

in Chapter 2 and [193]. Note that not all nsSNPs have their ESST scores; only 13 nsSNPs are assigned 

with their corresponding ESST scores due to limited numbers of three-dimensional structures. 

 

I now describe two stop-gained SNPs and a selected number nsSNPs, which are likely 

to be related to T1D based on the functional and structural assessments of amino acid 
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residues where the variants occur in their corresponding proteins. Equivalent positions 

of variants in homologues are interrogated instead if the three-dimensional structures 

are not available for some cases. All the SNPs described in this chapter are listed in 

Appendix II with their gene name, equivalent Ensembl identifiers, chromosome 

locations and their 5’ and 3’ sequences altogether. SNPs, both in this chapter and 

Appendix II, are given with their special placeholder names starting with the prefix 

‘jtt1d_’ followed by a numeric identifier. Appendix III lists substitution scores 

described in Figure 5-1. 

5.2.2 Two Stop-gained SNPs 

Two stop-gained SNPs—jtt1d_102 (Y239*) and jtt1d_250 (E243*)—are found in the 

C-terminal region of an interleukin-2 receptor subunit alpha (IL2RA) and a coenzyme 

Q-binding protein COQ10 homolog A (CQ10A), respectively (see Figure 5-2). From 

the 353 SNPs, eight genetic variants37 are within the coding region of IL2RA, of which 

four are synonymous, three non-synonymous—T91M (jtt1d_107), M113I (jtt1d_105) 

and M113R (jtt1d_106)—and one stop-gained SNP. The dbSNP reports that seven non-

synonymous SNPs are in the coding region of IL2RA, of which one nsSNP 

(rs41290331) corresponds to jtt1d_107. Two genetic variants38, out of the 353 SNPs, are 

within the coding region of CQ10A; one synonymous and one stop-gained. IL2RA 

contains a potential transmembrane region and a cytoplasmic domain at the C-terminus, 

which would be lost by truncation if the stop-gained SNP occurs. This would prevent 

signal transduction by interleukin-2, typically observed in immune cells such as 

lymphocytes. Hence, this stop-gained SNP could contribute to susceptibility to T1D. 

Indeed, the John Todd group already reported that genetic variations in IL2RA are 

associated with susceptibility to insulin-dependent diabetes mellitus type 10 

(IDDM1039) and T1D from the genome-wide association studies. [268,269]. 

 

                                                 
37 http://samul.org/T1D/353snps/gene/IL2RA/enst 
38 http://samul.org/T1D/353snps/gene/COQ10A/enst 
39 http://www.ncbi.nlm.nih.gov/omim/601942 
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Figure 5-2 Schematic diagrams highlighting positions of two stop-gained SNPs  

A and B illustrate the locations of two stop-gained variants (red vertical lines) within IL2RA and CQ10A, 

respectively. Two nsSNPs are indicated in grey vertical lines with their equivalent dbSNP identifiers 

highlighted in yellow. Arrows, spanning horizontally in the upper region for each picture, indicate the 

length of each protein. Cyan-coloured vertical lines are overlaid for every 10 amino acids across various 

annotations tracks with their titles in the left. Important regions, SCOP domains, and Pfam domains are 

indicated in grey, yellow and blue boxes, respectively. Figures are drawn using Gbrowse [270] and 

accessible from http://samul.org/T1D. 

 

AA  

BB  



 

 118

5.2.3 Analysis of non-synonymous SNPs 

5.2.3.1 Variants in interferon-induced helicase C domain-containing protein 1 (IFIH1) 

15 genetic variants 40  are found within DNA regions encoding interferon-induced 

helicase C domain-containing protein 1 (IFIH1). Among them, two are within introns 

and 13 in the coding region, of which 11 variants are non-synonymous SNPs (see 

Figure 5-3). Seven variants, indicated in yellow in Figure 5-3, are already deposited in 

dbSNP, of which rs1990760 (jtt1d_11, A946T) is reported to be associated with 

susceptibility to insulin-dependent diabetes mellitus [271,272,273]. Hence, only three 

are novel: jtt1d_10, jtt1d_19, and jtt1d_22. The variant (A946T) is located in the C-

terminal region, as shown in Figure 5-3, with four metal (zinc) binding residues (residue 

907, 910, 962 and 964) located nearby. The geometric distance between one of the zinc 

ions and Ala946 was measured to see whether the variation (jtt1d_11) could affect zinc 

binding physically, but this seems unlikely; the distance is approximately 20 Å (see 

Figure 5-4A). Substitution scores of the variation are also non-negative; 1 by ESST and 

PAM, 0 by BLOSUM. However, substitution scores of variant jtt1d_22 (V340G), 

located at the helicase ATP-binding domain (residues from 316 to 509), is very low; -3 

both from PAM and BLOSUM, -5 by ESST. Based on the three-dimensional structure 

(PDB: 3B6E), Val340 is found in a solvent inaccessible region buried between two 

helices (see Figure 5-4B). Removal of two methyl groups can be very deleterious by 

removing the hydrophobic nature found in the wild-type amino acid residue. 

 

                                                 
40 http://samul.org/T1D/353snps/gene/IFIH1 
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Figure 5-3 11 non-synonymous SNPs found within IFIH1  

The positions of 11 amino acid variants are indicated by grey vertical lines. Note that there are two 

consecutive variants at residue 842 and 843 – so they are coloured together. Seven dbSNP identifiers are 

highlighted in yellow. Other representations and colour schemes are the same as in Figure 5-2. 
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Figure 5-4 Three-dimensional structure of IFIH1 highlighting two wild-type amino acids of variant 

jtt1d_11 and jtt1d_22 

A. Ala945 (jtt1d_11) and zinc ion are coloured in CPK and red, respectively, and both are represented in a 

space filing model. The main-chain backbone is illustrated as a cartoon. The three-dimensional structure 

is from PDB (2RQB), which crystallises the C-terminal region (residues from 896 to 1025) of IFIH1. The 

distance between the zinc ion and Ala945 is approximately 20 Å. B. Val340 (jtt1d_22) is coloured in CPK. 

The distance between Val340 and its nearby helical region is 7.8 Å. Other representations and colour 

schemes are the same as shown in A. Both figure A and B are drawn using Jmol [274] and accessible 

from http://samul.org/T1D. 

 

 

AA  BB
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5.2.3.2 Variant in Cytotoxic T-lymphocyte protein 4 (CTLA4) 

There are seven genetic variants41 in DNA regions coding for cytotoxic T-lymphocyte 

protein 4 (CTLA4), of which variant T17A (jtt1d_36) is annotated as “increased risk for 

Graves disease, insulin-dependent diabetes mellitus, thyroid-associated orbitopathy, 

systemic lupus erythematosus and susceptibility to hepatitis B virus infection 

[275,276,277,278,279]” by UniProt with an equivalent dbSNP identifier rs231775. 

Thr17 is located within the N-terminal region of a cytotoxic T-lymphocyte protein 4 

where a potential signal sequence is located (see Figure 5-5). Therefore, the amino acid 

variant might interrupt the signal that directs where the native protein should be 

transported. However substitution scores are non-negative; 0 by BLOSUM and 1 by 

PAM. 

 

 

 

Figure 5-5 A schematic diagram highlighting the position of jtt1d_36 within CTLA4 

The position of jtt1d_35 (Thr17) is indicated with a red vertical line with its dbSNP equivalent (rs231775) 

highlighted in yellow at the same position. Other representations and colour schemes are same as shown 

in Figure 5-2. 

 

                                                 
41 http://samul.org/T1D/353snps/gene/CTLA4 
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5.2.3.3 A variant within zinc-finger CCCH domain-containing protein 10 (ZC3HA) 

Two genetic variants are found within the genetic region of ZC3H1042 which encodes a 

zinc-finger CCCH domain-containing protein 10 (ZC3HA); one (jtt1d_186) in the 3’ 

UTR and the other nsSNP—jtt1d_185 (E135Q)—within the protein coding region 

indicated as a vertical line in Figure 5-6A. There are three zinc-finger domains, of 

which the nsSNP occurs in the third domain. The three-dimensional structure of 

ZC3HA was not available in the PDB, but a close homologue (33% sequence 

identity)—RNA-binding domain in the human muscleblind-like protein 2 (PDB: 

2E5S)—was found and the equivalent position was investigated (see Figure 5-6B). The 

homologue contains the last two zinc-finger CCCH domains out of four in total. The 

equivalent position (Asn54) of jtt1d_185 is located in the loop region between two zinc 

finger domains. Asn54 does not seem to take part in the zinc-binding motif directly, but 

appears to act as a scaffolding residue by making a close contact (5.6Å) with Cys23 

which is one of CCCH motif as shown Figure 5-6B (see [280,281] for review papers on 

zinc-biding sites). Considering a common qualitative feature of a metal-binding sites 

[282], the variant appears to be a hindrance to the zinc-finger binding motif. In addition, 

the secondary structure of Asn54 corresponds to a positive φ main-chain torsion angle, 

which is stabilized by establishing an interaction between a side-chain carbonyl (CO) 

and a main-chain carbonyl (CO) (see section 3.2.3) [235]. Interestingly, Glu135, which is 

the wild-type amino acid of jtt1d_185, also retains a carbonyl group in its side chain and 

is more frequently observed in a positive φ torsion angle class than Gln, the mutated 

residue (see Table 3-1). The substitution score, both from PAM and BLOSUM, from 

Glu to Gln is 2, suggesting it would not be so much deleterious. However deprivation of 

an acidic carboxyl group could possibly affect the stability of zinc finger motif. There 

are no reported amino acid variants associated with this protein from dbSNP. 

 

                                                 
42 http://samul.org/T1D/353snps/gene/ZC3H10 
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Figure 5-6 A schematic diagram highlighting the position of jtt1d_185 and its equivalent position 

within a homologue 

A. A schematic diagram of ZC3HA showing UniProt annotations with the location of jtt1d_185. The 

position of jtt1d_185 (E135Q) is indicated with a red vertical line. Two structural domains, assigned by 

the SCOP database, are indicated in yellow boxes. Other representations and colour schemes are the same 

as shown in Figure 5-2. B. A solution structure of the two zinc finger domains (CCCH) of muscleblind-

like protein 2, which is a structural homologue of ZC3HA. Asn54, the equivalent position of jtt1d_185, is 

AA

BB 
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represented in a space filling model and coloured in CPK. Two zinc ions are coloured in cyan with their 

binding motif (CCCH) annotated. 

 

 

5.2.3.4 Three variants within sulphite oxidase (SUOX) 

There are 10 variants43 in the genetic region coding for mitochondrial sulphite oxidase 

(SUOX), of which three—jtt1d_155 (P212S), jtt1d_156 (Y392S), and jtt1d_158 

(G453D)—are non-synonymous SNPs. SUOX catalyzes the conversion of sulphite 

(SO3) to sulphate (SO4), the terminal step in the oxidative degradation of cysteine and 

methionine. There are three SCOP domains within this enzyme, of which the 

molybdenum (Mo) pterin domain, a ligand-binding domain, contains two amino acid 

variants (P212S and Y392S) and the E set domain, which belongs to Ig-like fold 

families, contains the last (G453D) (see Figure 5-7A). Deficiency of 

this enzyme in humans leads to a Mendelian disease known as isolated sulphite oxidase 

deficiency (ISOD), characterized by neurological abnormalities including multicystic 

leukoencephalopathy with brain atrophy [283,284,285]. 11 amino acid variants are 

known to be associated with the disease (see ‘SwissProt Variants’ track of Figure 5-7A), 

but none of them overlaps with the location of the three novel nsSNPs. There is the 

three-dimensional structure (PDB: 1MJ4) of this enzyme, but the crystal resolves only 

one domain (cytochrome b5-like heme-biding domain; residue 79 to 160) which does 

not contain any novel nsSNPs. Its chicken homologue (SUOX_CHICK), however, has 

the full-length protein crystallised and its structure solved in a dimeric state, so the 

equivalent positions of the three nsSNPs were investigated instead (see Figure 5-7B). 

First, I inspected the geometrical distances between the variants and their adjacent 

ligands (SO4 and Mo) to see whether the variants are close enough to impair ligand 

bindings physically, but it is unlikely based on the distance alone (>10Å). However, I 

found that Gly375 (jtt1d_158), which is in the E set domain, makes a close contact 

(<5.5Å) with Ser435 of the other protomer coloured green in Figure 5-7B. Therefore, this 

variant could disturb dimerization of this enzyme, which is active only in the dimeric 

state. Indeed, introduction of carboxyl side-chain (Asp) in place of wild-type side chain 

                                                 
43 http://samul.org/T1D/353snps/gene/SUOX 
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(Gly) could clash with neighbouring residues (Ser). The substitution scores for all the 

three nsSNPs are negative (-1 for both BLOSUM and PAM), suggesting deleterious 

effects if they occur. 
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Figure 5-7 A schematic diagram highlighting the positions jtt1d_155, jtt1d_156 and jtt1d_158 and 

their equivalent positions within a chicken sulfate oxidase (a homologue of Human sulfate oxidase). 
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A. A schematic diagram of SUOX showing UniProt annotations and the locations of three nsSNPs 

(jtt1d_155, jtt1d_156 and jtt1d_158); they are indicated by blue, green and red vertical lines, respectively. 

In the “Binding Site” track, the first two metal-binding (METAL) residues (118 and 143) are responsible 

for interaction with an iron (part of heme) and the remaining two (264 and 317) for molybdenum (Mo). 

Other representations and colour schemes are the same as shown in Figure 5-2. B. The crystal structure of 

a chicken sulfate oxidase (a homologue of SUOX_HUMAN). The equivalent positions of three nsSNPs 

are coloured in grey with a space-filling model. The mainframe structure is represented in a cartoon and 

coloured by chain; chain A in blue and chain B in green. The two homologues share 64% sequence 

identity. 

 

 

 

5.2.3.5 Two variants within a transmembrane region 

Jtt1d_31 (R539G) and jtt1d_225 (L446P) occur in the transmembrane region of a 

potassium voltage-gated channel subfamily H member 7 (KCNH7) and a zinc 

transporter ZIP5 protein (S39A5), respectively (see Figure 5-8A and Figure 5-8B). The 

substitution scores, according to PAM, are -6 and -5 for jtt1d_31 and jtt1d_225, 

respectively, suggesting these substitutions would be very deleterious and very unlikely 

observed in nature. Indeed, jtt1d_31 replaces the large (174.2 g/mol), positively charged 

side-chain of Arg539, with the small (75.07 g/mol) non-polar sidechain of Gly. Hence, 

the significant differences in size and conformation preferences would likely disturb the 

local structure. There are several structural homologues of KCNH7, but they do not 

contain the transmembrane domain region where the variant actually resides; this is a 

reflection of the fact that membrane proteins are under represented in the PDB due to 

difficulties in producing crystals.  
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Figure 5-8 A schematic diagram highlighting the position of jtt1d_31 and jtt1d_225 

A and B illustrate the positions of jtt1d_31 and jtt1d_225, indicated in red vertical lines, within the 

UniProt protein KCNH7 and S39A5 respectively. Other representations and colour schemes are the same 

as shown in Figure 5-2. 

 

AA  
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5.2.3.6 Variants in ErbB3 and its binding protein (PA2G4) 

The receptor tyrosine protein kinase erbB-3 (ErbB3)—a member of the epidermal 

growth factor receptor (EGFR) family—contains 10 Asn-linked glycosylation sites, of 

which Asn414 corresponds to the wild-type amino acid of jtt1d_173 (N414H). 

Interestingly, Asn414-linked-N-glycan in ErbB3 is known to play an essential role in 

regulating receptor hetero-dimerization with ErbB2 and also to have an effect on 

transforming activity [286]. In addition, it is reported that N414Q mutant of ErbB3 

triggers auto-dimerization with ErbB2 without any ligand stimulation, which further 

accelerates phosphorylation of the receptor tyrosine. Eventually, the mutation 

promotes extracellular signal-regulated kinase (ERK) and Akt phosphorylation; 

sometimes overexpressed in a subset of human mammary tumors. Therefore, it is 

probable that the His variant at residue 414, induced by jtt1d_173, could also trigger 

spontaneous dimerization of the protein and further promote the signal transduction 

process and tumor development, but further molecular experiment is required to confirm 

this. Figure 5-9A illustrates the three-dimensional structure of ErbB3 (PDB: 1M6B), 

highlighting the wild-type amino acid (Asn395) of jtt1d_173 interacting with a sugar 

molecule. In a distant homologue of the protein—type 1 insulin-like growth factor 

receptor extracellular domain (PDB: 1IGR)—the equivalent position (Asn72 of chain A) 

is responsible for interaction with a sulphate ion (SO4), but it seems that this may be an 

artefact promoting crystallization of a protein rather than physiologically relevant (see 

Figure 5-9B). I also investigated the three-dimensional structures of EGF receptor 

extracellular domains, homologues of ErbB3, (PDB: 1MOX, 1YY9 and 1NQL), but the 

equivalent position does not seem to inhibit EGF binding directly (see Figure 5-9C). 

 

The ErbB3-binding protein 1, also known as a proliferation-associated protein 2G4 

(PA2G4), interacts with ErbB3 (see above) and plays an important role in an ErbB3-

regulated signal transduction pathway. Glu168 is the wild-type residue where the variant 

jtt1d_183 (E168G) is located. It is not clear whether Glu168 takes part in interactions 

with ErbB3, but if it does, the variant could possibly inhibit signal transduction. Indeed, 

Glu168 is located at the surface region based on the three-dimensional structure of 

PA2GA (PDB: 2Q8K), (see Figure 5-9D). Also, considering the physicochemical 
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properties of Glu, which is polar and negatively charged, it is likely that Glu168 is 

responsible for interaction, but further molecular studies are required to verify this. The 

amino acid substitution score from Glu to Gly is -2 according to both BLOSUM and 

PAM, and even lower (-4) based on ESST under the local structural environment of 

Glu; solvent accessible helical region without hydrogen-bond from side-chain. 

 

 

Figure 5-9 Three-dimensional structure of ErbB-3 and its binding protein 

A. Three-dimensional structure of ErbB3 (PDB: 1M6B). Asn395 of chain A (jtt1d_173) and its interacting 

sugar molecule NAG (N-acetyl-D-glucosamine) are represented as space-filling models and coloured in 

CPK and yellow, respectively. Residues from 311 to 479, L domain (SCOP: d1m6ba2) are represented as 

a cartoon and wireframe elsewhere. B. Three-dimensional structure of a type 1 insulin-like growth factor 

receptor extracellular domain (PDB: 1IGR), a homologue of ErbB3. Asn72 of chain A, the equivalent 

position of jtt1d_173, and its interacting sulphate ligand are represented as space-filling models and 

coloured in CPK and yellow, respectively. Residues from 1 to 149, L domain (SCOP: d1igra1), are 

represented in a cartoon, and wireframe elsewhere. C. Three-dimensional structure of an EGF receptor 

AA  
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extracellular domain (PDB: 1MOX), a homologue of ErbB3. Asn79 of chain A, the equivalent position of 

jtt1d_173, is represented as a space filling model and coloured in CPK. Two SCOP domains, Epidermal 

Growth Factor (EGF) receptor (residue 1 to 162 of chain A) and EGF (residues from 2 to 50 of chain C), 

are represented as a cartoon and coloured in pale blue and pink, respectively. D. Three-dimensional 

structure of a proliferation-associated protein 2G4 (PDB: 2Q8K), the ErbB3-binding protein. Glu168, the 

wild-type amino acid of jtt1d_183, is represented as a space filling model and coloured in CPK. Chain A 

is coloured in pale blue and represented as a cartoon. 

 

 

 

5.2.3.7 Variants in signal transducer activator of transcription 2 (STAT2) 

10 genetic variants are found in DNA regions coding the signal transducer activator of 

transcription 2 (STAT2), of which four are non-synonymous SNPs: jtt1d_275 (Q826H), 

jtt1d_276 (M594I), jtt1d_277 (A465S), and jtt1d_278 (I464V). As shown in Figure 

5-10A, there are 11 known amino acid variants of STAT2, of which three are at the 

positions where variant jtt1d_275, jtt1d_226 and jtt1d_278 are located; hence, only 

A465S is novel. STAT2 mediates signalling from type I interferons which trigger 

dimerization of phosphorylated of STAT1 and STAT2 via Jak kinases [287]. The 

phosphorylated STATs dimerise and interact with other molecules to form a 

transcription factor complex (ISGF3), which enters the nucleus. Four SCOP domains 

are assigned to residues 1 to 701, of which the p53-like transcription factor domain 

contains two variants (A465S and I464V) and the SH2 domain contains one (M594I).  

 

There is a three-dimensional structure of STAT2 (PDB: 2KA4), but it contains only 

residues 783 to 838 (transactivation domain of STAT2) forming a complex with the 

TAZ1 domain of a CREB44-binding protein [288]. Based on the structure, Gln826—wild-

type amino acid of jtt1d_275—is responsible for interaction with a CREB-binding 

protein (chain A); Cα-distance is less than 7.5Å. Therefore the variant may interrupt the 

interaction (see Figure 5-10B). This could further inhibit dimerization of 

phosphorylated STAT2. The position of jtt1d_275 is same as that of rs222936345 of 

                                                 
44 cAMP response element binding 
45 http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ss.cgi?subsnp_id=16361239 
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dbSNP [289] and VAR_01921346 of SwissVar [138]. In Figure 5-10C, equivalent 

positions of three remaining variants (jtt1d_276, jtt1d_277 and jtt1d_278) were 

investigated in the three-dimensional structure of STAT1 (PDB: 1YVL), a homologue 

of STAT2. Gln595, the equivalent wild-type amino acid of jtt1d_276, is very close 

(<6.1Å) to Asn670 located in a loop region nearby; hence, the variant may incur local 

structural changes. Ser466 and Gly467—equivalents of jtt1d_278 and jtt1d_277, 

respectively—are located within a helical region interfacing another helical segment in 

the p53-like transcription factor domain. In particular, Ser466 is fairly close (<7Å) to 

Leu556 of its nearby helical region, so it may interrupt helical packing. However, none of 

the substitution scores of these nsSNPs is negative. 

 

 
                                                 
46 http://expasy.org/cgi-bin/variant_pages/get-sprot-variant.pl?VAR_019213 
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Figure 5-10 A schematic diagram and three-dimensional structure highlighting variants within 

STAT2 and its homologue 

A. A schematic diagram of STAT2 illustrating the locations of four nsSNPs–jtt1d_275, jtt1d_276, 

jtt1d_277 and jtt1d_278–indicated by grey vertical lines. Their dbSNP and SwissVar equivalents are 

coloured in yellow boxes. Note that two consecutive variants (at residue 464 and 465) are coloured 

together. Other representations and colour schemes are the same as shown in Figure 5-2. Figure B shows 

the NMR structure of STAT2 (coloured in light green) and its interacting molecule CREB-binding protein 

(coloured in pale blue).  The three-dimensional structure of STAT2 corresponds to the N-terminal region 

(residue 783 to838) shown in Figure A. Gln826 (jtt1d_275) is coloured in CPK and represented in a space 

filling model. The main-chain backbone is illustrated as a cartoon. The closest distance between jtt1d_173 

and chain A is 7.5 Å. Figure C shows the crystal structure of STAT1, which is a homologue of STAT2 

shown in Figure A (residue 1 to 678). Four SCOP domains are coloured in green, yellow, pink and purple 

in the same order as they appear in Figure A. The equivalent positions (Ser466, Gly457 and Gln595) of three 

nsSNPs are coloured in CPK with a space-filling model. The mainframe structure is represented as a 

cartoon. The two homologues share 44.3% sequence identity. 

 

 

 

5.2.3.8 Variants in the myosin light chain (MLY6) 

Two nsSNPs—jtt1d_195 (P112S) and jtt1d_197 (V145L) —are found within genetic 

regions coding myosin light chain 6 (MYL6). There are two UniProt proteins 

corresponding to the locus MYL6: myosin light polypeptide 6 (MYL6) and myosin 

light chain 6B (MYL6B), which share 81% sequence identity. Variant V145L—this is 

same as rs61938990 of dbSNP—is within the third EF-hand domain of MYL6, whereas 

P112S is between first and second EF-hand domains of MYL6B. The three-dimensional 

structure of MYL6 (PDB: 1BR1) reveals that Val145 is one of the residues interacting 

with chain B, a myosin heavy chain (see Figure 5-11A). In addition, Val145 is making a 

very close contact (<4.2Å) with its nearby helical segment, which constitutes an EF-

hand motif. Therefore, replacement of Val with Leu could disturb native local structure 

by introducing a methyl group, even though the substitution scores are non-negative: 0 

by PAM and 1 by BLOSUM and ESST. Figure 5-11B highlights the position of Pro112 

(jtt1d_195), which is located in a coiled region linking two helices (PDB: 1OE9). 

Investigation of close homologues suggests that the equivalent position might disturb 
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interactions with the following ligands, presumably through a local conformational 

change: (i) calcium ion from troponin C (PDB: 1AVS, 1TNQ and 1YTZ; see Figure 

5-11C), (ii) magnesium ion from troponin C (PDB: 1SBJ), and (iii) lead ion from 

calmodulin (PDB: 1N0Y Figure 5-11D). The substitution score from Pro to Ser is 

negative according to BLOSUM (-1) and ESST (-2).  

 

 

Figure 5-11 Three-dimensional structures highlighting the locations of two variants jtt1d_195 and 

jtt1d_197 

A. A chicken homologue of MYL6 (coloured in yellow) is shown with a myosin heavy chain (MYH11) 

coloured in light blue. Val144 is the wild-type amino acid residue of jtt1d_197. Two homologues (MYL6 

chicken and human) share 90% sequence identity. B. Three-dimensional structure of MYL6B (coloured 

in light green) and a myosin heavy chain (wireframe in light blue). The position of jtt1d_195 is 

represented as a space filling model and coloured in CPK. C. Three-dimensional structure of a calcium-

saturated N-terminal domain of troponin, a homologue of MYL6B. Calcium ion is coloured in green and 

illustrated as a space filling model. D. Three-dimensional structure of a calmodulin protein, a homologue 

of MYL6B. Calcium and lead ion is coloured in green and orange in C and D, respectively, and illustrated 

as a space filling model. 
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5.2.3.9 Variants in ankyrin repeat domains 

The serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit C 

(ANR52) is a regulatory subunit of protein phospatase 6 that is involved in the 

recognition of phosphoprotein substrates. The protein is encoded by gene ANKRD52 

onto which 22 genetic variants47 were mapped; 10 are within the coding region, of 

which six are nsSNPs. There are 28 ankyrin (ANK) repeats, a 33-residue motif 

consisting of two alpha helices separated by loops, within the protein and the six 

nsSNPs are within the motifs except jtt1d_239 (S1061T), which is also known as 

rs59626664 (see Figure 5-12A). One more genetic variant (dbSNP: rs12305753) is 

already identified with this protein, which corresponds to jtt1d_241 (S499P); hence, 

only four nsSNPs are novel. Among them, substitution scores of variant C733W 

(jtt1d_240), located in ANK 21, and P492T (jtt1d_243), in ANK 15, are negative 

according to both BLOSUM and PAM. Figure 5-12B and Figure 5-12C show the three-

dimensional structure of an ANK repeat motif (PDB: 1NOR), highlighting two 

equivalent positions of jtt1d_240 (His80) and jtt1d_243 (Pro104). His80 is within a 

solvent-accessible loop region linking two helices and makes hydrogen-bonds to amide 

and carbonyl groups of a main-chain in an adjacent helical region. Hence mutation of 

this residue could decrease local structural stability and further destabilize the ANK 

motif. Pro104, however, is located in the solvent-inaccessible helical region of the motif 

without any hydrogen-bond from its side chain. Substitution with Thr would allow a 

hydrogen bond through the hydroxyl group of the sidechain; therefore it could incur 

local structural changes. In addition, considering the functional role of the ANK repeat 

(mediating protein-protein interactions), the two nsSNPs could be very deleterious.  

 

                                                 
47 http://samul.org/T1D/353snps/gene/ANKRD52 
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Figure 5-12 A schematic diagram highlighting the amino acid variants in ANK repeats and their 

equivalent positions within the three-dimensional structure 

A. A schematic diagram of ANK52 illustrating the positions of six nsSNPs (indicated with grey vertical 

lines) within the protein: jtt1d_247 (N35K), jtt1d_243 (P492T), jtt1d_242 (A498P), jtt1d_241 (S499P), 

jtt1d_240 (C733W), and jtt1d_239 (S1061T). Two dbSNP equivalents (rs12305753 and rs59626664) are 

indicated in yellow. Note that two consecutive variants (residue 498 and 499) are coloured together. The 

ANK repeats are indicated as a grey box within the ‘Important Region’ track. Other representations and 

colour schemes are the same as shown in Figure 5-2. B. Three-dimensional structure of four ANK repeats 

(PDB: 1N0R). The structure corresponds to residues from 654 to 776 (or 375 to 497) shown in A. His80 

and Pro104 are equivalent positions of the variant C733W and P492T, respectively. C. Same structure 

illustrated at different angle. Substitution scores of jtt1d_240 (C/W) are -2 and -11, according to 

BLOSUM and PAM, respectively. Substitution scores of jtt1d_243 (P/T) are -1 and -2, according to 

BLOSUM and PAM, respectively. The structure shares 43.3% sequence identity with the equivalent 

sequence region. (Br: Bromide ion) 
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5.2.4 Concluding Remarks 

In this chapter, I have demonstrated a method for interrogating genetic variants 

responsible for disease aetiology using type 1 diabetes as an example. The main 

principle behind the approach explained in this chapter is simply applying lessons learnt 

from protein evolution to amino acid variants, in order to see whether they are 

acceptable or not. Therefore, I have mainly investigated structural and functional 

environments of amino acids variants; and interrogated them in terms of: i) their local 

structural environment to see whether native properties of wild-type amino acid have 

been impaired, and ii) the protein’s functional niche to assess the impact of mutations. 

The claimed candidate variants underlying T1D aetiology still need further molecular 

studies to verify the significance of my approach. However one major gain of this 

approach is that it should be complementary to current genome-wide association studies 

by prioritizing genetic variants for further study. Considering one of the critiques of 

GWAS, which states that it does not provide any functional implication of genetic 

variation, the reductionist approach described here could be advantageous and indeed 

applicable to molecular diagnosis, especially if there is concensus between the two 

methods.  

 

As shown in Table 5-2, amongst 353 SNPs, 192 (54.4%) are located within protein 

coding regions of which only 17.7% (34/192) are mapped onto their exact locations in 

protein three-dimensional structures. Hence, almost half (1 - 192/353) – those located 

within intronic regions and regulatory regions – could not be considered in this study, 

and even the majority (1 - 34/192) of protein-coding SNPs could not be interrogated in 

terms of their local structural environments. Here, I want to bring several points to the 

fore from this statistic. Firstly, modelling three-dimensional structures could help 

increase the coverage of nsSNPs to be interrogated within a structural context. Even 

though I tried to make the best of structural information by using sequence homology 

with proteins of known three-dimensional structure, this is limited by the quality of 

alignments especially for low sequence identity regions. Secondly, I focused only on 

protein-coding variants that replace amino acid types. However, complex diseases are 

not always influenced by the coding SNPs. Indeed more evidence is emerging for the 
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role of intronic SNPs that control splicing and expression (and timing of expression) of 

DNA and RNA products [290,291] and even synonymous SNPs are reported to control 

mRNA stability and for correct splicing [121]. In addition, I had to exclude many 

genetic variants responsible for insertions and deletions of DNA bases and larger copy 

number variants because they are more difficult to study with what we learnt from 

protein evolution. Lastly, the frequencies of 353 SNPs from the 80 samples (a mixture 

of cases and controls) were not accessible to me at this stage of analysis. Hence they 

need to be further analised to establish a causal relationship between genetic variations 

and disease phenotypes. 

 

5.3 Materials and Methods 

5.3.1 Locating SNPs in Genome  

The SNP data from the work of John Todd’s group has been considered on the basis of 

the Genome Reference Consortium48 version 37 (GRCh37). The locations of 353 SNPs, 

within the Ensembl genebuild (database version: 57.37b), were identified by using 

Ensembl API [245] and transferred onto corresponding Ensembl human genes (ENSG), 

transcripts (ENST), and proteins (ENSP). If a coding sequence of a transcript does not 

start with a legacy translation initiation codon (AUG), no further mapping process could 

be proceeded, so an error flag has been raised as shown in Table 5-2. 

 

5.3.2 Mapping Ensembl proteins onto three dimensional structures 

Ensembl protein sequences were aligned with their corresponding UniProt sequences 

using BL2SEQ software, an implementation of the Smith-Waterman algorithm [292], of 

the NCBI Blast software package [64]. The aligned Ensembl-UniProt sequence was 

further mapped onto three-dimensional structures using Double-map method [193] 

explained in 2.3.2 and 4.3.3 

 

                                                 
48 http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/index.shtml 
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5.3.3 Characterization of functional and structural environments 

Table 5-4 shows the list of UniProt annotations used to characterize the functional 

features of amino acid residues where the SNPs are located. UniProt Knowledgebase 

XML files are downloaded from the FTP site of UniProt49  50  and their functional 

features are parsed using the Perl XML::Twig 51 . To identify the local structural 

environment of amino acid residue, JOY has been used [60]. The criteria applied to 

determine the local environment are explained in 4.3.4 in details. 

 

As described in Chapter 1 the local structural environments of amino acid residues 

where SNPs occur are characterized on the basis of definitions suggested by Overington 

and colleagues [88,89]: 1) main-chain conformation and secondary structure, 2) solvent 

accessibility and 3) hydrogen bonding between side chains and main chains. In this 

framework, there could be 64 distinct environments for a residue from the combination 

of structural features: four from secondary structures (α-helix: H , β-strand: E, coil: C 

and residue with positive φ main-chain torsion angle: P), two from solvent accessibility 

(accessible: A and inaccessible: a), and eight (23) from hydrogen bonds to main-chain 

carbonyl (C and c) or amide (N and n) or to another side chain (S and s). In addition, 

three functional interaction types are sought from our in-house data sources: 1) protein-

protein interaction from PICCOLO database [41], 2) protein-ligand interaction from 

CREDO [293], and 3)  protein-nucleic acid interaction from BIPA [202]. 

 

 

                                                 
49 ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz 
50 ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.xml.gz 
51 http://xmltwig.com/ 
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Table 5-4 Lists of UniProt functional features used 

Annotations Descriptions 

REGION Extent of a region of interest in the sequence 

VAR_SEQ Description of sequence variants produced by alternative splicing, alternative 
promoter usage, alternative initiation and ribosomal frameshifting 

VARIANT Authors report that sequence variants exist 

HUMSAVAR Human polymorphisms and disease mutations 

TRANSMEM Extent of a transmembrane region 

NP_BIND Extent of a nucleotide phosphate-binding region 

MUTAGEN Site which has been experimentally altered by mutagenesis 

DISULFID Cysteine residues participating in disulfide bonds 

METAL Binding site for a metal ion 

DNA_BIND Denotes the position and type of a DNA-binding domain 

MODRES Modified residues excluding lipids, glycans and protein crosslinks 

BINDING Binding site for any chemical group (co-enzyme, prosthetic group, etc.) 

ZN_FING Denotes the position(s) and type(s) of zinc fingers within the protein 

ACT_SITE Amino acid(s) directly involved in the activity of an enzyme 

PEPTIDE Extent of an active peptide in the mature protein 

MOTIF Short (up to 20 amino acids) sequence motif of biological interest 

COMPBIAS Region of compositional bias in the protein 

CARBOHYD Covalently attached glycan group(s) 

CA_BIND Denotes the position(s) of calcium binding region(s) within the protein 

PROPEP Part of a protein that is cleaved during maturation or activation 

SITE Any interesting single amino acid site on the sequence 

SIGNAL Sequence targeting proteins to the secretory pathway or periplasmic space 

TRANSIT Extent of a transit peptide for organelle targeting 

CROSSLNK Residues participating in covalent linkage(s) between proteins 

NON_TER The sequence is incomplete. Indicate that a residue is not the terminal residue of the 
complete protein 

LIPID Covalently attached lipid group(s) 
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5.3.4 Building a web front-end 

Web front-end: The web front-end (http://www-cryst.bioc.cam.ac.uk/t1d) has been 

built on the basis of the Perl Catalyst web application framework52 as this employs the 

Model-View-Controller pattern, which simplifies application development and 

maintenance.  

Database back-end: The MySQL53 is used as a main relational database management 

system (RDBMS) and the Perl DBIx::Class54 for mapping relation data to data objects. 

Web server: The Apache HTTP server55 (version 2.2.4) and mod_perl are used to 

deploy SAMUL on the web. 

 

                                                 
52 http://www.catalystframework.org/ 
53 http://www.mysql.com/ 
54 http://search.cpan.org/dist/DBIx-Class/ 
55 http://httpd.apache.org/ 
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Chapter 6  
 
SAMUL: A Web-based Database System for 
Visualizing Structural and Functional Features of 
Proteins 

 

So far, I described structural and functional environments that shape and affect the 

occurrence of amino acid substitution from the perspective of protein evolution. Also I 

addressed what determines amino acid replacements and to what extent those 

environments contribute distinctive substitution patterns. Finally, I characterized 

structural and functional restraints of amino acid variations in human proteins and 

exemplified how the understanding of structural and functional restraints can help 

interrogating genetic variations identified from a genome-wide association study of type 

1 diabetes. In this chapter, I describe development of a web-based database system 

which compiles data sources that I have used in previous chapters. Some of the material 

in this chapter has been published in Molecular BioSystems56  which I co-authored with.

                                                 
56 Lee S, Brown A, Pitt WR, Perez Higueruelo A, Gong S, et al. (2009) Structural interactomics: 
informatics approaches to aid the interpretation of genetic variation and the development of novel 
therapeutics. Mol Biosyst. 
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6.1 Introduction 

To understand the complex nature of molecular interactions within and between cells, it 

is desirable to employ an approach that can encompass the various kinds of genomic 

and proteomic data. Indeed, several centralised databases, such as Ensembl [245] and 

GenBank [295] harness the deluge of genome sequence information and automate 

functional annotations of genes and proteins needed for structural interactomics. In 

addition, recent technical advancements in X-ray crystallography and NMR experiments 

have enabled massive production of protein structure information. The Protein Data 

Bank (PDB) is the main repository of 3D structures of biological protein 

macromolecules [214]. As of 22 June 2009, more than 58,000 structures had been 

deposited in the PDB. These structures are made up of 75,574 polypeptide chains, 6,862 

nucleotide chains, 13 polysaccharide chains, and 81,735 ligands. Thus it is essential that 

databases can handle massive quantities of structural data for large-scale analyses of 

protein structures and their interactions. With this motivation, multiple databases 

concerning the structure and interactions of protein–protein, protein–nucleic acid, 

protein–small molecule, and protein–carbohydrate complexes have been developed to 

provide the basis for the various analyses (see [294] for a review).  

 

Whilst various individual databases enable interaction type-specific structural and 

functional restraints to be investigated, the interactome is the sum of individual 

interactions. This dictates the need for integration between the disparate databases and 

other informatics resources. There is a need to annotate the system fully, in which 

protein sequence and protein structure information are integrated. Also, despite the 

considerable structural information available for proteins and protein interactions, gaps 

still persist, such as the under-representation of transmembrane proteins in the PDB. In 

order to understand a system fully it becomes necessary to fill the gaps, a process that 

can be partially achieved through comparative modelling [213]. 

 

In this context, the Blundell group recently developed GLORIA, which is a structural 

information-centric meta-database, as an outcome of integrating comprehensive 

structural annotations with the results of automated modelling and nsSNP analysis 
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[115,294]. Through the mapping between sequence and structures (double-map), which 

has been described in Chapter 2, all the databases for protein–protein interactions 

(PICCOLO [41]), protein–nucleic acid interaction (BIPA [202]), protein–ligand 

interaction (CREDO [293]), protein–protein inhibitors (TIMBAL [296]), protein 

structure alignment (TOCCATA, [41]) and nsSNPs on protein structure and 

comparative models are interconnected (see Figure 6-1). This comprehensive relational 

scheme can be further extended by integrating genome-scale modelling pipeline, so 

functional residues and their mutations can be extended through homology at large-

scale. Figure 6-1 shows a schematic diagram and workflow of GLORIA comprising 

major databases, categorised by interaction type, alongside our in-house databases. 

 

 

Figure 6-1 GLORIA and homology modelling-pipeline 

 GLORIA is a federation of interconnected databases integrating comprehensive biomolecular 

interactions and structural annotations with the results of the automated modelling at the genome-scale 

and analysis of impact of nsSNPs (this picture is taken from the reference [294] written by the Blundell 

group which I co-authored with). 

  

In this chapter, I describe SAMUL57 which is a web front-end of GLORIA. The main 

backbone of SAMUL is a sequence-to-structure mapping, as shown in Figure 6-1, 

which interconnects in-house databases and external data sources such as PDB, UniProt 

                                                 
57 http://www-cryst.bioc.cam.ac.uk/samul (or http://samul.org/main, alternatively) 
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and Ensembl. SAMUL also provides structural and functional annotations of amino acid 

residues of proteins. The structural annotations are mainly from the local structural 

environments (by the scheme of 64 environments, described in section 1.2.2) of amino 

acid residues determined by JOY and presented and highlighted by Jmol − a molecular 

viewer [274]. For functional annotations, 26 UniProt feature descriptions are selected 

and the information is transferred onto their corresponding positions in 3D structures if 

available. In addition, SAMUL accommodates amino acid variations and mutations, 

which have been analyzed in Chapter 4, so that they can be browsed and interpreted in 

conjunction with the structural and functional environments of the wild type amino acid 

residues. 

 

6.2 Results 

6.2.1 Protein Sequence-to-Structure Mapping 

Since the first identification of a protein sequence – that of insulin by Sanger and Tuppy 

in the 1950s [3,4], high-throughput sequencing techniques have enabled massive 

production of sequence information from different organisms. UniProt [216] is a central 

hub for protein sequences, providing rich annotation on function and cross-references. 

However, it does not explicitly provide any three-dimensional structure information of 

proteins at the amino acid residue level. Hence, in order to harness both UniProt and 

PDB information, sequences in UniProt have been mapped to their corresponding 

structures in the PDB [55,217,218,219,220,221,222].  

 

In Chapter 2, I described a method, Double-map, to align a UniProt sequence to its 

corresponding PDB structure at residue level [193]. By using Double-map, UniProt 

annotations, especially feature (FT) records, can be harnessed and interpreted in the 

context of 3D structures of proteins. Further applications of Double-map are possible in 

combination with TOCCATA [41,115]. For example, the UniProt annotations can be 

extended across conserved positions within a TOCCATA alignment. In addition, 

nsSNPs that occur at protein coding regions can be mapped onto their corresponding 

amino acids in the context of their 3D structures if they are available in the PDB.  
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Figure 6-2 A screen shot58 of SAMUL showing sequence-to-structure alignment between G chain of 

1CDL and P11799 

Two alignments (hence double-map) are shown here; 1) alignment between amino acid sequence defined 

in SEQRES record and that of ATOM record of a PDB file, 1CDL, 2) between amino acid sequence 

defined in SEQRES of the PDB file and the sequence from the corresponding UniProt entry (P11799). 

‘Index’ is for the amino acid position of SEQRES and ‘ResNum’ is the residue number both in ATOM 

record of 1CDL and P11799. Amino acids, shown in ‘AtmRes’ column, are represented in JOY format 

(see Figure 1-1B). ‘ENV’ is for the local structural environment within the scheme of 64 (see Figure 

1-1A). For the definitions of entries in Annotations column, see Table 6-1. 

6.2.2 Rich Annotations 

SAMUL provides 34 annotations at amino acid residue level from which 6 are for 

structural annotations of 3D structures and the rest 28 are for functional annotations 

mainly from UniProt features (FT) descriptions. Table 6-1 shows the full list of 

annotations available from SAMUL.  

                                                 
58 http:// samul.org/main/pdb/1cdl/G/resmap 
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Table 6-1 Lists of structural and functional annotations provided from SAMUL (TLB for the in-house resource developed in the TLB group) 

Source Annotations URL Descriptions 

TLB PICCOLO http://www-cryst.bioc.cam.ac.uk/piccolo Protein-protein interaction database 

 CREDO http://www-cryst.bioc.cam.ac.uk/credo A protein-ligand interaction database for drug discovery 

 BIPA http://www-cryst.bioc.cam.ac.uk/bipa Biological Interaction database for Protein-nucleic Acid 

UNIPROT REGION http://www.uniprot.org/manual/region Extent of a region of interest in the sequence 

 VAR_SEQ http://www.uniprot.org/manual/var_seq 
Description of sequence variants produced by 
alternative splicing, alternative promoter usage, 
alternative initiation and ribosomal frameshifting 

 VARIANT http://www.uniprot.org/manual/variant Authors report that sequence variants exist 

 HUMSAVAR http://www.uniprot.org/docs/humsavar Human polymorphisms and disease mutations 

 TRANSMEM http://www.uniprot.org/manual/transmem Extent of a transmembrane region 

 NP_BIND http://www.uniprot.org/manual/np_bind Extent of a nucleotide phosphate-binding region 

 MUTAGEN http://www.uniprot.org/manual/mutagen Site which has been experimentally altered by 
mutagenesis 

 DISULFID http://www.uniprot.org/manual/disulfid Cysteine residues participating in disulfide bonds 

 METAL http://www.uniprot.org/manual/metal Binding site for a metal ion 

 DNA_BIND http://www.uniprot.org/manual/dna_bind Denotes the position and type of a DNA-binding 
domain 

 MODRES http://www.uniprot.org/manual/mod_res Modified residues excluding lipids, glycans and protein 
crosslinks 

 BINDING http://www.uniprot.org/manual/binding Binding site for any chemical group (co-enzyme, 
prosthetic group, etc.) 

 ZN_FING http://www.uniprot.org/manual/zn_fing Denotes the position(s) and type(s) of zinc fingers 
within the protein 

 ACT_SITE http://www.uniprot.org/manual/act_site Amino acid(s) directly involved in the activity of an 
enzyme 
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 PEPTIDE http://www.uniprot.org/manual/peptide Extent of an active peptide in the mature protein 

 MOTIF http://www.uniprot.org/manual/motif Short (up to 20 amino acids) sequence motif of 
biological interest 

 COMPBIAS http://www.uniprot.org/manual/compbias Region of compositional bias in the protein 

 CARBOHYD http://www.uniprot.org/manual/carbohyd Covalently attached glycan group(s) 

 CA_BIND http://www.uniprot.org/manual/ca_bind Denotes the position(s) of calcium binding region(s) 
within the protein 

 PROPEP http://www.uniprot.org/manual/propep Part of a protein that is cleaved during maturation or 
activation 

 SITE http://www.uniprot.org/manual/site Any interesting single amino acid site on the sequence 

 SIGNAL http://www.uniprot.org/manual/signal Sequence targeting proteins to the secretory pathway or 
periplasmic space 

 TRANSIT http://www.uniprot.org/manual/transit Extent of a transit peptide for organelle targeting 

 CROSSLNK http://www.uniprot.org/manual/crosslnk Residues participating in covalent linkage(s) between 
proteins 

 NON_TER http://www.uniprot.org/manual/non_ter The sequence is incomplete. Indicate that a residue is 
not the terminal residue of the complete protein 

 LIPID http://www.uniprot.org/manual/lipid Covalently attached lipid group(s) 

CSA CSA_PSI http://www.ebi.ac.uk/thornton-srv/databases/CSA/ 

A database documenting enzyme active sites and 
catalytic residues in enzymes of 3D structure: 
homologous entries, found by PSI-BLAST alignment to 
one of the original entries 

 CSA_LIT http://www.ebi.ac.uk/thornton-srv/databases/CSA/ 

A database documenting enzyme active sites and 
catalytic residues in enzymes of 3D structure: original 
hand-annotated entries, derived from the primary 
literature 

COSMIC COSMIC http://www.sanger.ac.uk/genetics/CGP/cosmic/ Catalogue Of Somatic Mutations In Cancer 

ENSEMBL ENVAR http://www.ensembl.org/info/docs/variation/index.html Ensembl Human variation database 

PDB MOD_RES http://www.wwpdb.org/documentation/format32/sect3.html#MODRES descriptions of modifications (e.g., chemical or post-
translational) to protein and nucleic acid residues 
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6.2.3 Genetic Variation in Protein Structures and Disease 

SAMUL houses amino acid sequence variants from Homo sapiens genome annotation 

provided by the following data sources; 1) Ensembl human variation database [245], 2) 

cancer somatic mutation from COSMIC [140], 3) UniProt human sequence variations 

[244]. They are integrated with various annotation information mentioned in the 

previous section. Table 6-2 shows the number of SNPs mapped onto UniProt, PDB, 

PICCOLO, CREDO, and BIPA at the time of writing. SNPs in Ensembl proteins were 

mapped onto their corresponding UniProt proteins and further to proteins in 

PDB via Double-map. SNPs in PICCOLO (4696), CREDO (3263), and BIPA (122) are 

subsets of SNPs in the PDB (18963). Among them, nsSNPs are of special interest 

especially if their allele types change corresponding amino acids which are presumably 

responsible for interactions in PICCOLO, CREDO and BIPA. 
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Table 6-2 Number of distinct SNPs categorized by annotations in SAMUL 

Type Database NO of distinct SNPs 

Sequence Ensembl 203484 

 UniProt 194053 

Structure PDB 18963 

 PICCOLO 4696 

 CREDO 3263 

 TOPO_DOM 3068 

 REGION 2412 

 ZN_FING 183 

 NP_BIND 140 

 DNA_BIND 135 

 BIPA 122 

 PEPTIDE 115 

 COSMIC 110 

 DISULFID 100 

 MOD_RES 92 

 CSA_PSI 85 

 CARBOHYD 81 

 MUTAGEN 71 

 SITE 63 

 BINDING 62 

 COMPBIAS 53 

 MODRES 52 

 TRANSMEM 47 

 METAL 45 

 PROPEP 42 

 CA_BIND 37 

 MOTIF 37 

 ACT_SITE 23 

 CROSSLNK 5 

 CSA_LIT 4 

 NON_TER 3 

 TRANSIT 2 

 SIGNAL 1 
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6.2.4 Visualization of Annotations 

GBrowse: Structure and function annotations are graphically visualized and highlighted 

at the residue level of UniProt (or Ensembl) protein sequence using GBrowse (Generic 

Genome Browser) which is an open-source genome viewer widely used in the 

community [270]. Figure 6-3 shows a GBrowse generated image highlighting functional 

and structural annotations of a cell division protein kinase 2 (CDK2, UniProt accession: 

P24941). The image can be locally saved in various formats such as PNG, SVG and 

PDF through the web site. Annotations on the image are linked to the original sources 

of information so that users can investigate those features in depth. 
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Figure 6-3 A screen shot59 of GBrowse from SAMUL 

Structural and functional annotations are provided by 9 tracks: 1) secondary structure, 2) Pfam and 3) 

SCOP for domain assignment information, 4) binding sites, 5) important regions, and 6) site for 

functional features, 7) synSNP, 8) nsSNP and 9) SwissVariants for amino acid variation information. 

 

 

 

                                                 
59 http://samul.org/gb2/gbrowse/samul/?name=P24941 
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Jmol: Structural and functional annotations mapped onto 3D structure of PDB files 

could be selected and highlighted within the Jmol macromolecular view [274]. Figure 

6-4 exemplifies a Jmol embedded SAMUL screen shot showing 3D structure of a cell 

division protein kinase 2 (CDK2, PDB code: 2VTI), featuring the location of various 

structural and functional features within the structure.  

 

 

Figure 6-4 A screen shot60 of Jmol from SAMUL 

The navigation panel is on the right-hand side and the Jmol viewer is on the left. The pre-defined 

structural and functional annotations are presented as follows: 1) SCOP domain, 2) surface and core 

regions, 3) interface residues between two adjacent SCOP domain, 4) types of ligand, 5) amino acid 

variants, and 6) functional residues from the UniProt entry. There is also a form input field which accepts 

Jmol queries from advanced users who wish to manipulate visualisation options with their own flavours. 

The main chain of the protein molecule is presented as a cartoon with structural annotations in space-

filled models of the individual amino acids. 

 

                                                 
60 http://samul.org/main/pdb/2vti/jmol?hl=45:A&label=VARIANT&bgcolor=white 
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6.2.5 Distributed Annotation System (DAS) 

SAMUL is a Distributed Annotation System (DAS) server, which provides XML-based 

web services to disseminate structural and functional annotations through the web. The 

DAS protocol is built on a client-server system which allows a single machine to 

communicate with a distant web server to gather different types of biological 

annotations, collate the information, and display it to the end user in a single view. Most 

of the major knowledge-based biological systems such as Ensembl, UCSC genome 

browser [297] and WormBase [298] provide DAS services. Numerous DAS resources 

are coordinated by the DAS registration server61 [255]. Figure 6-5 shows an example of 

how the DAS service of SAMUL can be used in Jalview62 which is a java-based 

multiple sequence alignment viewer and editor [252]. 

 

 

                                                 
61 http://www.dasregistry.org/ 
62 http://www.jalview.org/ 



 

 155

 

 

Figure 6-5 A screen dump showing the use of DAS service of SAMUL in Jalview 

Four sequence alignment panels and two DAS configuration windows are shown. In the alignment panels, 

the following annotations ‘BINDING’, ‘ACT_SITE’, ‘METAL’ and ‘NP_BIND’ are coloured in green, 

cyan, magenta and red, respectively.  
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6.3 Materials and Methods 

6.3.1 Data Source 

Sequence-to-structure mapping: SAMUL employs the double-map method which 

aligns a sequence of UniProt to its corresponding PDB structure at residue level. See 

section 2.3.2 in details. 

Sequence variations: The Ensembl human variation database is a major source of 

genetic variations. Also, COSMIC and UniProt are used as a source of cancer mutation 

data and disease-related amino acid variations, respectively. See section 4.3.1 for details. 

Annotations: UniProt Knowledgebase XML files are downloaded from the FTP site of 

UniProt63 64 and their functional features are parsed using the Perl XML::Twig65. The 

TBL group’s in-house databases − BIPA, CREDO, and PICCOLO − are used for the 

source of inter-molecular interaction types and CSA and PDB as the source of catalytic 

residue and modified residue information, respectively. For structural annotations Table 

6-1 shows the full lists of annotations used in SAMUL.  

6.3.2 Software 

Calculation of local structural environments: JOY was used to identify the local 

structural environments of amino acids [60]. See section 3.3.2 for details. 

Web front-end: SAMUL has been developed on the basis of the Perl Catalyst web 

application framework66  as this employs the Model-View-Controller pattern, which 

simplifies application development and maintenance. The Jmol macromolecular 

viewer 67  is a default visualisation tool for a PDB file highlighting structural and 

functional features within the molecules. GBrowse68  (version 2.0) is installed as a 

generic protein browser and a DAS server. SAMUL employs modern web 2.0 

technology such as Google Ajax API, jQuery Javascript library and plugins such as the 

boxy, the jQuery tools and the coda-slider.  

                                                 
63 ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz 
64 ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.xml.gz 
65 http://xmltwig.com/ 
66 http://www.catalystframework.org/ 
67 http://www.jmol.org/ 
68 http://gmod.org/wiki/Gbrowse 
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Database back-end: The MySQL69 is used as a relational database management system 

(RDBMS) and the Perl DBIx::Class70 for mapping relation data to data objects. 

Web server: The Apache HTTP server71 (version 2.2.4) and mod_perl are used to 

deploy SAMUL on the web. 

                                                 
69 http://www.mysql.com/ 
70 http://search.cpan.org/dist/DBIx-Class/ 
71 http://httpd.apache.org/ 



 

 158

Chapter 7  
Concluding Remarks 

 

In this thesis, I attempted to unravel the nature of amino acid replacements during 

protein evolution and tried to apply the principles to the understanding of the genetic 

variations or somatic mutations responsible for disease susceptibilities. However, I am 

deeply aware that assumptions underpinning this study are limited and reflect only 

some of the aspects out of many possible perspectives underlying how we understand 

protein evolution, genetic variations or mutations, genotype-phenotype causality and 

disease aetiology. Here, I enumerate limitations of methodologies in use and challenges 

raised during my study in the hope that this can give insights to those who wish to tackle 

the challenges in the future. 
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7.1 Restraints vs. constraints 

When it comes to describing “evolution”, the Blundell group has been using “restraints” 

for many years, although we accept that most evolutionary biologists use “constraints”. 

However, protein structures are not “constrained” in evolution for the following reason. 

Firstly, based on the use of words written in a dictionary, the usual definition of 

“constrain” is “force, oblige, compel”; there is no option. The definition of “restrain” is 

to hold within bounds. In many areas of mathematical computation this is recognised; 

for example “restrained refinement” where we have target values and “constrained 

refinement” where the values are fixed. A “constraint” to us is a fixed aspect of a 

function, whereas a “restraint” is a target value which we seek to meet. Hence, in 

describing the evolution of proteins, we are mostly talking about “restraints” as we seek 

to retain secondary structure but know it changes even for orthologues. The packing of 

residues in the core is assumed to provide a local environment with which amino acid 

substitutions must be compatible, but once substitutions accumulate, so this becomes 

untrue. I therefore prefer the term “restraints”, knowing that there will be variation in 

evolution. Secondly, I use “restraints” in the sense that these are structural, dynamic, 

systems or functional factors that influence the acceptance of amino acid substitutions 

that occur in divergent protein families. Given that selection occurs at the level of the 

organism and that individual proteins and the systems within which they evolve are 

plastic, these “constraints” tend not to “force”, but rather to “restrain” the substitutions 

that occur in evolution. 

 

7.2 Interaction types as functional restraints 

In Chapter 2, I showed that discrimination of functional restraints from structural 

restraints could help describing the pattern of amino acid replacement and even enhance 

finding active site residues. However, considering the fact that all of the restraints to do 

with maintenance of tertiary structure are ultimately functional, it is not a trivial 

problem to make an explicit distinction between functional restraints and structural ones 

[299]. Indeed, many functions are mediated through quaternary interactions of proteins 

with other macromolecules in assemblies or with substrates, ligands or allosteric 
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regulators. The effects of these restraints are felt some distance away from the 

interaction site, but tend to have an increasing influence nearer to the site.  

 

Integration of functional features, especially active sites of enzyme, into local structural 

environments is best exemplified by Chelliah et al. [100]. They measured the Euclidean 

distance between every amino acid and the known functional residues and compared the 

degree of conservation in terms of the proximity of functional residues. They showed 

that the degree of residue conservation is significantly higher in residues that are near to 

the active site compared with those that are far from it. Hence, geometrical distance 

from known active sites constitutes another restraint on amino acid substitutions in 

protein evolution and therefore can serve as an additional parameter to define the local 

structural environment in classifying amino acid substitution patterns (know as 

function-dependent ESST).  

 

More recently, Richard Bickerton [41] considered the impact of protein-protein 

interactions on amino acid substitutions and made an interface-dependent ESST by 

taking four types of interacting accessibility interface residues: (i) interface core, (ii) 

interface periphery, (iii) core, and (iv) exposed. He showed that the strongest 

determinant is the interfacial accessibility environment followed by types of secondary 

structure. He also found that the interface environments are intermediate between the 

exposed surface and buried core; the interface core is more similar to the buried protein 

core and the interface periphery is more similar to the exposed surface.  

 

Similarly, Semin Lee [294] considered residues involved in intermolecular interactions 

with nucleic acids and classified theses further into three types: (i) hydrogen bond; (ii) 

water-mediated hydrogen bond; and (iii) van der Waals contact. He found that residues 

interacting with nucleic acids have distinct substitution patterns when compared with 

the other sites and suggested the restraints of protein–nucleic acid interaction should 

also be considered. 

 

The examples described above, which demonstrate restraints of amino acid substitution, 

also arise from interactions with other proteins; these are often components of 
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interaction networks, which are conserved throughout evolution [300] so that interacting 

proteins are under various restraints such as activity and life-time [301,302,303]. 

7.3 Toward integrated analysis of protein evolution 

In Chapter 3, I focused on how amino acid substitutions, during divergent evolution of 

protein families, are constrained by the local structural environment of amino acid 

residues. I showed that strong restraints arise from the conservation of structure, not 

only from maintenance of a hydrophobic core and secondary structure, but also from 

buried, often charged hydrogen bonds. However, I have not attempted to discuss the 

origins of folds nor their evolution by additions and subtractions of elements of 

secondary structure, gene duplications and fusions; these have been widely reviewed 

elsewhere [304,305,306,307].  Neither did I consider restraints arising from the genomic 

position of the encoding genes, expression patterns, position in biological networks and 

robustness to translation [79]. (see section 1.1.4 for various non-structural restraints of 

protein evolution). Other factors can also be correlated with the rate of protein evolution. 

For example, expression level might be an important factor influencing evolutionary 

rate [72,308,309] as highly expressed proteins are constrained to have fewer mutations 

than relatively rare proteins to avoid the cost of misfolding effects. A proper 

understanding of the restraints on amino acid substitutions is an essential prerequisite to 

understanding protein evolution, but further insights will depend on integrated and 

multidisciplinary systems approaches [79,310].  

 

7.4 Orthologues vs. paralogues 

Chapter 3 defines each amino acid position, within a protein family or superfamily, in 

terms of its local structural environment and considers the impact of structural restraints 

on the amino acid substitutions that have been accepted during evolution. One major 

challenge here is to distinguish orthologues, which have the same functions in different 

organisms, and paralogues, in which gene duplication has occurred and new functions 

may have emerged [311]; in the latter case the restraints will have changed. Generally 

orthologs are defined on the basis of sequence similarity but this remains a source of 

uncertainty in comparative analyses [311]. Another argument that arises is the extent to 
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which the local environment is conserved in homologous families and therefore can 

provide restraints on amino acid substitutions. In other words, within a protein family or 

superfamily, how deep we should scan to extract important structural and functional 

features. For instance, if a set of sequences were only recently diverged they would not 

have accumulated enough substitutions to identify evolutionary restraint. Analyses of 

families and superfamilies of proteins show that the most critical packing arrangements 

of individual sidechains begin to differ when two proteins have less than 30% sequence 

identity due to relative movements of equivalent secondary structural elements [16,227], 

but some critical hydrogen-bonding interactions are retained at much greater levels of 

sequence divergence.  

 

7.5 Obscure properties of cancer mutations 

In Chapter 4, I showed that cancer somatic mutations and disease-related variants occur 

more frequently at amino acids making hydrogen bonds from side chains than neutral 

polymorphisms. In addition, based on substitution scores and amino acid property 

matrices, I showed that the severity of cancer somatic mutations lies between that of 

Mendelian disease-related variants and polymorphic variants; less deleterious than 

Mendelian disease causing variants but more severe than polymorphic variants. 

However, these properties of cancer mutations obscure the fact that cancers arise from 

mutations in a subset of genes that confer growth advantage to the tumour. Recently, 

Talavera et al. [246] investigated the pattern of cancer-related mutations and compared 

them with those from polymorphic variants. They showed that the distribution of 

cancerous amino acid substitutions is very similar to that of polymorphism, suggesting 

they are under similar selection pressures by neutral evolution, although polymorphic 

variants tend to occur at less conserved positions than cancer-related mutations. It is 

known that not all somatic mutations confer growth advantage to the cells. There are 

‘driver’ somatic mutations which are the main contributors to the development of the 

cancers, whereas most somatic point mutations are likely to be ‘passengers’ that do not 

contribute to oncogenesis [158]. However, it is not a trivial problem discriminating 

between the two and our dataset almost certainly contains both types, obscuring the 

effect of ‘driver’ mutations. None the less, it is reported that driver mutations are more 
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clearly associated with key protein features than other somatic mutations (passengers) 

that have not been directly linked to tumour progression [312]. In addition, recent 

findings from the Stratton group could hopefully help identifying how the structural and 

functional properties of cancer mutations could contribute to cancer developments [120]. 

 

7.6 Other things to consider 

At the time of this study, reported SNPs comprise 0.46% (0.13% for verified SNPs) of 

the total number of human DNA base pairs of which 53% of SNPs occur at intergenic 

regions and 36% occur at intronic region (See Table 7-1). Only 1.26% of human SNPs 

occur in protein coding regions of which more than half are non-synonymous SNPs 

(0.64%)—those that have been considered in Chapter 4—and the rest are synonymous 

SNPs (0.46%), frame shift (0.09%) and stop-gained mutations (0.02%). Throughout my 

analysis, I did not take the expression level into account; rather I assumed that proteins 

are expressed equally no matter whether they contain sequence variants or not. However, 

it is clear that proteins having deleterious mutations are selectively controlled by the 

protein degradation system to protect against misfolded or damaged proteins [77] and 

sometimes those mutations are compensated in other species [313].  

 

 



 

 164

 

Table 7-1 Total number of SNPs by different types of their consequences 

Type Occurrence Ratio (%) 

INTERGENIC 7,982,768 53.07 

INTRONIC 5,481,863 36.45 

UPSTREAM 663,985 4.41 

DOWNSTREAM 556,742 3.70 

3PRIME_UTR 137,639 0.92 

NON_SYNONYMOUS_CODING 96,031 0.64 

WITHIN_NON_CODING_GENE 86,955 0.58 

SYNONYMOUS_CODING 69,035 0.46 

5PRIME_UTR 28,343 0.19 

FRAMESHIFT_CODING 14,002 0.09 

REGULATORY_REGION,INTRONIC 13,365 0.09 

SPLICE_SITE,INTRONIC 10,457 0.07 

REGULATORY_REGION,UPSTREAM 4,951 0.03 

REGULATORY_REGION,INTERGENIC 4,949 0.03 

NON_SYNONYMOUS_CODING,SPLICE_SITE 2,845 0.02 

STOP_GAINED 2,533 0.02 

data from Ensemble human variations   
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Appendix I  
Coordinates of 64 environments projected onto the 
principal component (PC) 1, 2 and 3 

 
Structural 

Environment1 PC1 PC2 PC3 

CASON -11.39 2.94 -3.32 
CASOn -8.77 4.34 -2.31 
CASoN -11.32 2.41 -4.16 
CASon -10.54 3.84 -3.58 
CAsON -8.62 2.51 -2.60 
CAsOn -8.83 4.56 -1.26 
CAsoN -9.95 1.61 -4.27 
CAson -22.00 4.89 -6.02 
CaSON 8.52 -3.65 -1.61 
CaSOn 8.59 -3.68 0.06 
CaSoN 5.44 -3.42 -1.57 
CaSon 7.10 -2.77 -1.75 
CasON 7.17 -3.41 -0.66 
CasOn 8.49 -1.62 1.53 
CasoN 4.48 -1.74 -2.20 
Cason 13.77 -5.09 -0.09 

EASON -0.99 6.04 -7.85 
EASOn 0.86 8.75 -7.83 
EASoN -2.87 4.78 -7.30 
EASon -1.31 10.34 -8.40 
EAsON 0.80 5.43 -6.87 
EAsOn -0.07 7.20 -6.22 
EAsoN -3.01 5.35 -7.18 
EAson -9.10 18.97 -15.67 
EaSON 17.56 -0.88 -6.35 
EaSOn 16.33 0.37 -5.46 
EaSoN 12.01 0.20 -5.58 
EaSon 15.76 0.47 -4.34 
EasON 14.01 -0.37 -4.89 
EasOn 14.88 1.35 -4.04 
EasoN 11.17 0.17 -3.52 
Eason 27.48 -1.80 -10.81 

HASON -6.99 7.38 9.44 
HASOn -5.65 9.69 8.45 
HASoN -7.54 6.60 6.30 
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HASon -7.79 10.49 6.77 
HAsON -5.30 6.62 7.24 
HAsOn -6.10 9.67 7.94 
HAsoN -6.30 7.12 5.69 
HAson -20.54 18.38 15.65 
HaSON 11.31 -0.18 6.96 
HaSOn 14.30 2.17 8.36 
HaSoN 9.19 1.15 5.96 
HaSon 12.79 4.74 6.82 
HasON 10.46 0.13 6.37 
HasOn 13.13 2.06 9.08 
HasoN 8.90 1.34 5.50 
Hason 22.85 1.85 17.37 

PASON -17.35 -7.81 0.77 
PASOn -13.31 -8.66 0.58 
PASoN -13.22 -6.88 -0.13 
PASon -14.36 -9.21 0.13 
PAsON -13.07 -6.54 0.44 
PAsOn -14.49 -7.92 -0.52 
PAsoN -12.29 -6.38 -0.11 
PAson -30.47 -20.53 0.55 
PaSON 2.21 -11.83 2.33 
PaSOn 1.24 -10.98 1.57 
PaSoN 1.24 -8.70 1.01 
PaSon 1.50 -8.07 0.98 
PasON 1.34 -8.83 1.37 
PasOn 0.93 -8.46 1.40 
PasoN 1.35 -7.16 1.82 
Pason -3.62 -19.32 0.04 

1: See Table 1-2 for details 
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Appendix II  
List of Single Nucleotide Polymorphisms from Type 1 
Diabetes Genome-Wide Association Study 
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ID Chr Gene ENSG Strand Position Wt Mut prime_5 prime_3 

jtt1d_1 2 GCG ENSG00000115263 -1 163000583 C T ATTTTGGTCTGAATCAACCAGTTTATAAAGTCCCTGG CGGCAAGATTATCAAGAATGGTGTTCATCTCATCAGA 

jtt1d_2 2 GCG ENSG00000115263 -1 163005674 G A TGCCTTGTACCAGCATTACAAATAATCCAGCCACAAA GTAAATGCTTTTCATTTCTGCTGTCTGTCAGAACACA 

jtt1d_3 2 AC007750.1 ENSG00000236841 1 163027570 G A GGGTGTATAAGTGGTTCGTGGACAGGCCGGATAAGCC GTGGTTCTGGTCAGAGTACCACTGAAACACAAAGAAA 

jtt1d_3 2 FAP ENSG00000078098 -1 163027570 G A GGGTGTATAAGTGGTTCGTGGACAGGCCGGATAAGCC GTGGTTCTGGTCAGAGTACCACTGAAACACAAAGAAA 

jtt1d_4 2 FAP ENSG00000078098 -1 163029378 T C GTGCATTAACCAGAGCTTTAGCAATCTGTGCTGAGTT TTGAAAGTGCACATTATCTGCAACAAAGAGAGAGAGA 

jtt1d_5 2 FAP ENSG00000078098 -1 163055344 T C ACTTGCTGTGTAATATTGGCACCTTTCTTTCCTTAGA TGGCAAGTAACACACTTCTTGCTTGGAGGATAGCTTC 

jtt1d_6 2 FAP ENSG00000078098 -1 163076380 G A TCAAAAATTTAAACACTTACTAATTTACTCCCAACAG GCGACCAGCATAAATACTGAATTGGACGAGGAAGCTC 

jtt1d_7 2 FAP ENSG00000078098 -1 163080982 A G ATTGGATATAACCAAATTAAATAGTTGATACCTTTGA ATAATCACTTTCTAGATATACAAATTGCCGATCAGGT 

jtt1d_8 2 FAP ENSG00000078098 -1 163081036 A G ATACAAATTGCCGATCAGGTGATAAGCCGTAATTTGA AGCATTCACACTTTTCTGAAATTATGAAGAGGTTGAT 

jtt1d_9 2 IFIH1 ENSG00000115267 -1 163123842 G A AATTATTTTTGAAAACCACTACAAAATTCCTTATTTT GAGACAAGGCAAATCTAAGCCTTTGTGCACCATCATT 

jtt1d_10 2 IFIH1 ENSG00000115267 -1 163124040 C G AGATGATTTCACCATTTATTTGATAGTCGGCACACTT CTTTTGCAGTGCTTTGTTTTCTCTTACAATGTAAAGT 

jtt1d_11 2 IFIH1 ENSG00000115267 -1 163124051 C T CCATTTATTTGATAGTCGGCACACTTCTTTTGCAGTG CTTTGTTTTCTCTTACAATGTAAAGTTCCCTATAAGT 

jtt1d_12 2 IFIH1 ENSG00000115267 -1 163124596 C T TTGTGGAAAAATGTAAAAATGGGTCTTTCTGGACTCA CTTGAATTCTGGGGTCATATTGACGTGATGCATTTTC 

jtt1d_13 2 IFIH1 ENSG00000115267 -1 163124637 T C AATTCTGGGGTCATATTGACGTGATGCATTTTCTCAA TTACATGGATATCTTCCCCAGAACAGGCTAGCACACT 

jtt1d_14 2 IFIH1 ENSG00000115267 -1 163128824 T C ATACATCATCTTCTCTCGGAAATCATTAACTGTCTCA TGTTCGATAACTCCTGAACCACTGTGAGCAACCAGGA 

jtt1d_15 2 IFIH1 ENSG00000115267 -1 163128828 C T ATCATCTTCTCTCGGAAATCATTAACTGTCTCATGTT CGATAACTCCTGAACCACTGTGAGCAACCAGGACGTA 

jtt1d_16 2 IFIH1 ENSG00000115267 -1 163128893 C T CAGGACGTAGGTGCTCTCATCAGCTCTGGCTCGACCA CGGGCCTGAAAACACAAATAAATCAAGTAAATGAAAG 

jtt1d_17 2 IFIH1 ENSG00000115267 -1 163133396 G A CCTAGTATATTGCTCCATTATGGTATTTCTTAATTTG GTCAGCTTTTCATTTTCATATTCTGGGTTTTCAGCCA 

jtt1d_18 2 IFIH1 ENSG00000115267 -1 163136505 C G TATTGTCAATCAATAGATATAAAACATTAAGCCCATA CTTCTCTGGTTGCATCTGCAATGGCAAACTTCTTGCA 

jtt1d_19 2 IFIH1 ENSG00000115267 -1 163136557 G T CTGCAATGGCAAACTTCTTGCATGGCTCCTGTATTTG GTTTTTCAGTTGATCAAGGTTTTCTTTAACAGTTTTA 

jtt1d_20 2 IFIH1 ENSG00000115267 -1 163137871 C G TTACTTTTAAAATGTGTTCTTCAGCTTTGGCTTGCTT CGTGGCCCCTCCAACACCAGGTGAAGCTGTTAGTCCC 

jtt1d_21 2 IFIH1 ENSG00000115267 -1 163137983 T C CTTGAGTCTATTGTTTTTCAACTTCTGCATCAAATAA TGCCTCATGATGTTATTATACACTGCTTCTTTGTTGG 

jtt1d_22 2 IFIH1 ENSG00000115267 -1 163144721 A C TTTTTTCTTCTTGTCTAAGTGATCCTTGGCAATGTAA ACAGCCACTCTGGTTTTTCCACTCCCTGTAGGGAGGC 

jtt1d_23 2 IFIH1 ENSG00000115267 -1 163167419 T C ACAATCCTTTTTAGTAGCTCTCTTACACCTGATTCAT TTCCATTGTTTTCTGCAGCAGCAATCTGTTGTAAGAG 

jtt1d_24 2 GCA ENSG00000115271 1 163200678 T C TAGTGCGCCTTTCAGCCTCACCTGCAGCTGCGCCTCC TTGCACCTGCGCCTGTGCTTTTTCTCCCAGCACTGCG 

jtt1d_25 2 GCA ENSG00000115271 1 163208893 T G AGTGGATGCTGAAGAACTTCAGAGATGTTTGACACAG TCTGGAATTAATGGAACTTACTCTCGTGAGATCTTTT 

jtt1d_26 2 GCA ENSG00000115271 1 163217315 T G TGTCTGTGAAGAAGAAAATTATCTCCCTAGTTCAATC TGTAGTGAAATAAGACTACAGAAGGCATTGTTTTTTC 

jtt1d_27 2 KCNH7 ENSG00000184611 -1 163230011 T C ACTTACTTGTGAGGAAGGGCTGAAACTTCGGTCAGTT TTGATGGATGCTTCCGGTTGACTGGTTCTCATCAGCT 
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jtt1d_28 2 KCNH7 ENSG00000184611 -1 163241287 C G TGTTTCTTCAAAATCGAGCCCAGATGCTTTCCCTATT CCTGGAGAAGAGTCTACTATTCCTGAGAAGAGCGGCT 

jtt1d_29 2 KCNH7 ENSG00000184611 -1 163250987 G A TGTCTCCTTCTGAATCATTCATGGATTGTGATCGTAG GAGATCAGCCTTTGTTAATGGAACATGAAGATAAAAT 

jtt1d_30 2 KCNH7 ENSG00000184611 -1 163279930 G A ATTCTTCAAGACGTTGCCTCAGAGGGTTGGGGATTTG GTGAAAGCGAATGAACTCTTTTACTCGCAGCATCTGC 

jtt1d_31 2 KCNH7 ENSG00000184611 -1 163292047 T C ACAGCAGCGCCATATTCTGAATATCGATCCAGTTTCC TGGCCACGCGCACAAGACGGAGGAGTCGGGCAGTCTT 

jtt1d_32 2 KCNH7 ENSG00000184611 -1 163302901 C T GAAAGGGCTGTAGTGCAATATCGTAAACTTGTTGATG CGTGGTGTCTGCAGTTTGTATTCAGGTAGGACATCTG 

jtt1d_33 2 KCNH7 ENSG00000184611 -1 163353469 T C TATTTTGTACTAATATCTACGGCCATACCACCCTGAG TACATGTGATCTCATCTGATCTCAGAAATGCAACAGA 

jtt1d_33 2 5S_rRNA ENSG00000212312 1 163353469 T C TATTTTGTACTAATATCTACGGCCATACCACCCTGAG TACATGTGATCTCATCTGATCTCAGAAATGCAACAGA 

jtt1d_34 2 KCNH7 ENSG00000184611 -1 163360971 C T TAAGAAAATTGTGTCCTACCTGGGTCACTTTCTCAGT CACATTGTGTGTTCGATCTTTAACCTTGGGTGCAATA 

jtt1d_35 2 KCNH7 ENSG00000184611 -1 163361158 T A ATCTGATGTGGATCCCAGGAGGCTTGACTTGATATGA TTAAAAGGCCCTAAAAAAATGGAAAGTATTTGTAAGA 

jtt1d_36 2 CTLA4 ENSG00000163599 1 204732714 A G TGGATTTCAGCGGCACAAGGCTCAGCTGAACCTGGCT ACCAGGACCTGGCCCTGCACTCTCCTGTTTTTTCTTC 

jtt1d_37 2 CTLA4 ENSG00000163599 1 204738067 A T AAGGTTGTATTGCATATATACATATATATATATATAT ATATATATATATATATATATATATATATATATATATA 

jtt1d_38 2 CTLA4 ENSG00000163599 1 204738068 T A AGGTTGTATTGCATATATACATATATATATATATATA TATATATATATATATATATATATATATATATATATAT 

jtt1d_39 2 CTLA4 ENSG00000163599 1 204738083 A G TATACATATATATATATATATATATATATATATATAT ATATATATATATATATATATATATTTTAATTTGATAG 

jtt1d_40 2 CTLA4 ENSG00000163599 1 204738084 T C ATACATATATATATATATATATATATATATATATATA TATATATATATATATATATATATTTTAATTTGATAGT 

jtt1d_41 2 CTLA4 ENSG00000163599 1 204738092 T C ATATATATATATATATATATATATATATATATATATA TATATATATATATATTTTAATTTGATAGTATTGTGCA 

jtt1d_42 2 CTLA4 ENSG00000163599 1 204738094 T C ATATATATATATATATATATATATATATATATATATA TATATATATATATTTTAATTTGATAGTATTGTGCATA 

jtt1d_43 2 ICOS ENSG00000163600 1 204801577 C T GAAGTCAGGCCTCTGGTATTTCTTTCTCTTCTGCTTG CGCATTAAAGTTTTAACAGGTAAGTGGTGTATTGAAT 

jtt1d_44 2 ICOS ENSG00000163600 1 204824324 A C TTATGCTGAATTTTTGTTACAGATGTGACCCTATAAT ATGGAACTCTGGCACCCAGGCATGAAGCACGTTGGCC 

jtt1d_45 2 ICOS ENSG00000163600 1 204824355 T C TATAATATGGAACTCTGGCACCCAGGCATGAAGCACG TTGGCCAGTTTTCCTCAACTTGAAGTGCAAGATTCTC 

jtt1d_46 2 ICOS ENSG00000163600 1 204824652 G A AGCAGTGCATCAGCCAGTAAAACAAACACATTTACAA GAAAAATGTTTTAAAGATGCCAGGGGTACTGAATCTG 

jtt1d_47 4 AC097533.2 ENSG00000237868 -1 122999081 G A GACAGGAACTGCTCGTCCACATACTGGGGTGTCCCAG GGACAGCTGGAGGAGGCCGCCCATCATTTATATTAAA 

jtt1d_48 4 AC097533.2 ENSG00000237868 -1 122999385 G A AGCTTCTCCTAGAATGTTCCTCACCCCTCTATTCTCC GGCTCTGGCCTCTGTCCTTGAGGACGAGGAGGGGTCT 

jtt1d_49 4 AC097533.2 ENSG00000237868 -1 122999452 T C GGGGTCTTCTCCCTGGGGTCCTGTTGCCCAGTGCTGC TCCTTCCATAGAGGGGGATGATAAAAGGTATTTAAAA 

jtt1d_50 4 AC097533.1 ENSG00000241037 -1 123008808 C T GGCCAGTCTGACCTGGGCCAGTTCACTCCTCCTTAGG CAAACTGGCAGTCCCGGGAGGTCACCATATTGATGCT 

jtt1d_51 4 KIAA1109 ENSG00000138688 1 123113428 A G TCCGGAAGAAACAGAAGAAAATATTGAAGGAGAAATG AGCAGTGAGGATTGCAAATTACAAGACTTGCCTCCAT 

jtt1d_52 4 KIAA1109 ENSG00000138688 1 123145751 T A TGAGAGCACACGCTATGTTCTCAGCAGAAGGTCTTCC TTTGGGAAGCGATTCCTTAGAATACGCATGGTTAATT 

jtt1d_53 4 KIAA1109 ENSG00000138688 1 123145825 C T GATGTGCAGGCTGGAAGTCTTACAGCTAAGGTCACAG CACCACAGGTATGGTTTTCAGAGTACTATCTCCTGAC 

jtt1d_54 4 KIAA1109 ENSG00000138688 1 123150286 T C TAGATGTACAATCCTTTTTTATTTTAGTTGAGTTGTA TTCCTGGGCCTTGTCCAACTTCAGATGATTTGAAATA 

jtt1d_55 4 KIAA1109 ENSG00000138688 1 123159256 A G TCACTTAACCCACCTTTTGTTTGTTTAGGTAATGTGA ATGGCATGAAGAGGAAAGAATGGGAAAACAAATCAGT 

jtt1d_56 4 KIAA1109 ENSG00000138688 1 123159262 T A AACCCACCTTTTGTTTGTTTAGGTAATGTGAATGGCA TGAAGAGGAAAGAATGGGAAAACAAATCAGTGGGAAT 
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jtt1d_57 4 KIAA1109 ENSG00000138688 1 123159265 A G CCACCTTTTGTTTGTTTAGGTAATGTGAATGGCATGA AGAGGAAAGAATGGGAAAACAAATCAGTGGGAATAGA 

jtt1d_58 4 KIAA1109 ENSG00000138688 1 123159275 A G TTTGTTTAGGTAATGTGAATGGCATGAAGAGGAAAGA ATGGGAAAACAAATCAGTGGGAATAGAAGTAGAGAGA 

jtt1d_59 4 KIAA1109 ENSG00000138688 1 123159501 G C AGAGTTCTTGCATGGGACAAAAAGAGATGATGGCCAA GCAAGGTCAGTATTCACTTAGATTTAGAAGCCTGATC 

jtt1d_60 4 KIAA1109 ENSG00000138688 1 123160682 A G GGTAATAGCTTTGCTTTCTGTTTTAGTATCCCTACAG AAATTTCAGGAAACAGCCCTGTGTCTCCTAATACTCA 

jtt1d_61 4 KIAA1109 ENSG00000138688 1 123161331 C T AAACAGTGGAGAGTGAACAGATTACTCCGCAACAACC CGTGATGAATTGTTATCAGACTTACCTTACTCAGTTC 

jtt1d_62 4 KIAA1109 ENSG00000138688 1 123167847 T C CAGTTCTGAAATTTTGTGTGTGTGTTAGGTAAACTTA TGTTTGTTACAAGCCTCAGTGGAAGAATCTCCAACTA 

jtt1d_63 4 KIAA1109 ENSG00000138688 1 123168361 A G AAGAGACTTCAAACAATGCAGAACCTGGTAGAACATC AAATTTTGATAGGTATGTTCATGCCACAAAGATGCAG 

jtt1d_64 4 KIAA1109 ENSG00000138688 1 123171659 T A CTCCAACCGGCAGTGGCTATAATACTGATGTCTCTGA TGATAATCTTCCATGTGACCGGACAAGCCCTTCCTCA 

jtt1d_65 4 KIAA1109 ENSG00000138688 1 123175966 G A GTTTTTATAATTTTTTATTTATGTTAAAAAGGCAGCT GAACCTTTTAAGCACTGCAACACCAGCTGTTGGTGCA 

jtt1d_66 4 KIAA1109 ENSG00000138688 1 123176375 A G TTGCTCGCTTTCTCCAAGAAAATCCTTCATGTTTACT ATGTAATATACTACACCACTATCTGCACCAGGCAAAT 

jtt1d_67 4 KIAA1109 ENSG00000138688 1 123178574 T C TGAAACCTCAAATAGCTATGGACCATGAACATGAAGA TGGACTTGGATTGGACAATGGGGGTGGTCTTCAAAGT 

jtt1d_68 4 KIAA1109 ENSG00000138688 1 123178643 C T AAAGTGATACCAGTGCTGATGGAGCAGAATTTGAGTT CGATGCAGGTAGTTTTGTAAGCCTCTATTGAGTACTT 

jtt1d_69 4 KIAA1109 ENSG00000138688 1 123179900 C T CAGTGAACACACAATGCTATTAGAAGGAACAGCTAAC CGGCCTCCACCTGGTAGCTCTGGACCTGTAACTGGAG 

jtt1d_70 4 KIAA1109 ENSG00000138688 1 123184753 C T TCTCCTGTTACAAAATCAGGACACAATAGTCTTCCCA CAGGTATTGAGTTATCACATTATTTTGCTTAACTGTC 

jtt1d_71 4 KIAA1109 ENSG00000138688 1 123192240 A C GTTCAAACCAGCATTAATGTTGGGAACCTTTAGCATC AGTGCTGTTGTAATGGAAAAGTCCGTGTGCACCCCTC 

jtt1d_72 4 KIAA1109 ENSG00000138688 1 123192383 T C TTACTATTTCCTGTCAGTCAATAAGCCAGCATGTAGA TATGGCTTTGGTTCGTCTTATTCATCAGTTTAGCACA 

jtt1d_73 4 KIAA1109 ENSG00000138688 1 123201125 G A ACCAACTATCTAAACAAATCTCAGACCTAATCAGACA GCCTTCTACAGCGTAAGTTATTTTATTTGTTCACATT 

jtt1d_74 4 KIAA1109 ENSG00000138688 1 123207867 T G TATATAATGGAAGAACATGATAGTTATTCGGATCAGG TGTGGAGTATAGATGAACTGCCTTCTAAACAAGGTTA 

jtt1d_75 4 KIAA1109 ENSG00000138688 1 123229132 C T TATCAAAAGCTGTGCTGTTTTGGCTGAATTATAAGGC CGCCTATGACAACTGGAATGAACAACGAATGGCTTTA 

jtt1d_76 4 KIAA1109 ENSG00000138688 1 123245602 G A CTCTCCCATTTTGTTAGGCTGCTTCCCTAAAGGATAA GTGGGGTTTGAGTTACAAACCAAGTTACAGCCGATCA 

jtt1d_77 4 KIAA1109 ENSG00000138688 1 123249429 G A CTTTCCAAACTGAAGAGGGCCGACGGGATGACAGTTT GTCTTCTACCAGTGAAGATTCCGAGAAGGATGAAAAA 

jtt1d_78 4 KIAA1109 ENSG00000138688 1 123252539 C T AACAGGCTTTGCTGCTGTTCATCAGCTATTTACAGAA CGCTGGCCAACAACACCAGTCAATAGAAGTCTTAGTG 

jtt1d_79 4 KIAA1109 ENSG00000138688 1 123268859 A G CAATGAGCATATGACAAACAGCACCATGTCACCAGGG ACAGTAGGACAGAGCCTAAAATCCCCAGCTTCCATAA 

jtt1d_80 4 KIAA1109 ENSG00000138688 1 123271189 G A TGTCTACCTGGGGACCAGTTCCTTACCTTCCGCCAAA GACAATGACTAGCAACCTAGAAAAAAGTTCACAAGAA 

jtt1d_81 4 KIAA1109 ENSG00000138688 1 123274111 A G ATCATCGACACTGGCCTGGAGTATTGAAGGTGGTATC AGGATGCCACATATCCTTATTTCAGATTCCATTACCA 

jtt1d_82 4 KIAA1109 ENSG00000138688 1 123276961 G A ACTCTCTCTTTATCATTATGCATGTAGAGCTAAATCT GCTTCGTAATGTTGATGCTAACAACACTGAGAATAGC 

jtt1d_83 4 KIAA1109 ENSG00000138688 1 123277001 A G TCGTAATGTTGATGCTAACAACACTGAGAATAGCACT ACTGTGAAGAATTCTAGTTTGTTGAGTGGATTCAGAG 

jtt1d_84 4 KIAA1109 ENSG00000138688 1 123280860 T C CTGTGGACTGGAGAGATTTTATGTGCAATACATGGCA TCTAGAACCTACTCTTAGGTAAGTAATGAGTATATAC 

jtt1d_85 4 ADAD1 ENSG00000164113 1 123300267 G A TGGATGAAATGAGGGATTTTCTTGAAACAACCCTCAC GCAGGTACCCCTTGGGCAGCCTTCAACCGCTCTGGGG 

jtt1d_86 4 ADAD1 ENSG00000164113 1 123300599 C T GGCGCAAGCGCGGGGGCAAGAGCGCCGGCCTCCGAGA CGGTTAGTGATTGGACGAAGCAGGGCGCGGGGGCGCA 
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jtt1d_87 4 ADAD1 ENSG00000164113 1 123300758 G T CGAGAGGTTGAGGCTGGGAGGTGGGAGCAACGGCGGC GGCGGCCGCCTGCGAGCCCCCGGCCTGAGGCGCAGCA 

jtt1d_88 4 ADAD1 ENSG00000164113 1 123302244 C T CTCCAAAAAAAATACCTAAGGAATTTATAATGAAATA CAAACGTGGAGAGATAAATCCTGTGTCAGCCTTGCAC 

jtt1d_89 4 ADAD1 ENSG00000164113 1 123302255 A G ATACCTAAGGAATTTATAATGAAATACAAACGTGGAG AGATAAATCCTGTGTCAGCCTTGCACCAGTTTGCACA 

jtt1d_90 4 IL2 ENSG00000109471 -1 123372753 C A TAAATAAGTGAAACCATTTTAGAGCCCCTAGGGCTTA CAAAAAGAATCATAAAAGATCCATATTTATAGTTTTA 

jtt1d_91 4 IL2 ENSG00000109471 -1 123377482 C A TTACATTAATTCCATTCAAAATCATCTGTAAATCCAG CAGTAAATGCTCCAGTTGTAGCTGTGTTTTCTTTGTA 

jtt1d_92 4 IL2 ENSG00000109471 -1 123377635 A G TGGCAGGAGTTGAGGTTACTGTGAGTAGTGATTAAAG AGAGTGATAGGGAACTCTTGAACAAGAGATGCAATTT 

jtt1d_93 4 IL21 ENSG00000138684 -1 123533820 C T CTCCTCCACTTGGAATACAAAGAAATGACTTTCACTA CTATATTAGAGTATGTAACATAGTGTCCAACTGCAAG 

jtt1d_94 4 IL21 ENSG00000138684 -1 123533834 G A ATACAAAGAAATGACTTTCACTACTATATTAGAGTAT GTAACATAGTGTCCAACTGCAAGTTAGATCCTCAGGA 

jtt1d_95 4 IL21 ENSG00000138684 -1 123536963 G A TTCCTGTATTTGCTGACTTTAGTTGGGCCTTCTGAAA GCAGGAAAAAGCTGACCACTCACAGTTTGTCTGAAAG 

jtt1d_96 10 IL2RA ENSG00000134460 -1 6053568 C T GATCTTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGTG CCATCATGACTGACTGCAGCCTCGAACTCCTGGGCTC 

jtt1d_97 10 IL2RA ENSG00000134460 -1 6053809 C T GGGGTTATAGGCCTGAGCCACCGTGCCAGGCCTGATG CGCTCTTTTCCGTGGTTACGTTCTACCAGTGTGACCT 

jtt1d_98 10 IL2RA ENSG00000134460 -1 6053866 C T TTCTACCAGTGTGACCTCCATCCCTTCTCCCTCTTCA CTTCCTTCTTTCTTTCCTTCCTTGCATAAACATTGAA 

jtt1d_99 10 IL2RA ENSG00000134460 -1 6054083 T C CTTAAAGAGGCCAATTAGTAACGCACAGGTAAAACTT TGCTAAGTATGATTCTCTGCCTGGGACCTCATTCATC 

jtt1d_100 10 IL2RA ENSG00000134460 -1 6054158 C T TTCTGTTCCTGACATTGCCTCATGGGTTTGGCTGCCC CGTTTTGAAGTTACCCAAAGATTATTCTGCCATGGCC 

jtt1d_101 10 IL2RA ENSG00000134460 -1 6054765 C T GGATGTCTCCTGGGCGACCATTTAGCACCTTTGATTT CACTTGGGCTTCATGACTTCTGTTGTCTGTTCCCGGC 

jtt1d_102 10 IL2RA ENSG00000134460 -1 6061401 G T TGTCCACAAAGCCAGTGCCCCACTCACCTGCTACCTG GTACTCTGTTGTAAATATGGACGTCTCCATGGTTGCA 

jtt1d_103 10 IL2RA ENSG00000134460 -1 6063508 G A TGCATATGAGCTGGGGCTGGGTCCACCTTGTCTTCCC GTGGGTCATTTTGCAGACGCTCTCAGCAGGACCTCTG 

jtt1d_104 10 IL2RA ENSG00000134460 -1 6066229 T G AGATTCATCTCTCACCTGGAAGGCTCGCTTGGTCCAC TGGCTGCATTGGACTTTGCATTTCTGTGGTTTTCCTT 

jtt1d_105 10 IL2RA ENSG00000134460 -1 6066235 C A ATCTCTCACCTGGAAGGCTCGCTTGGTCCACTGGCTG CATTGGACTTTGCATTTCTGTGGTTTTCCTTTCTTTC 

jtt1d_106 10 IL2RA ENSG00000134460 -1 6066236 A C TCTCTCACCTGGAAGGCTCGCTTGGTCCACTGGCTGC ATTGGACTTTGCATTTCTGTGGTTTTCCTTTCTTTCT 

jtt1d_107 10 IL2RA ENSG00000134460 -1 6066302 G A TTCTTTCTGTTCTTCAGGTTGAGGTGTCACTTGTTTC GTTGTGTTCCGAGTGGCTAGAAAATATAGATGGAATG 

jtt1d_108 10 IL2RA ENSG00000134460 -1 6067873 G A GGCTAGAGTTTCCTGTACAGAGCATATAGAGTGACCC GCTTTTTATTCTGCGGAAACCTCTCTTGCATTCACAG 

jtt1d_109 10 IL2RA ENSG00000134460 -1 6067969 C T AGGCCATGGCTTTGAATGTGGCGTGTGGGATCTCTGG CGGGTCATCGTCACAGAGCTCTGCAAAGCAAAAGAAG 

jtt1d_109 10 AL137186.1 ENSG00000229664 1 6067969 C T AGGCCATGGCTTTGAATGTGGCGTGTGGGATCTCTGG CGGGTCATCGTCACAGAGCTCTGCAAAGCAAAAGAAG 

jtt1d_110 10 RP11-414H17.1 ENSG00000214015 -1 6113523 A G TTTGCTGCACAGCTTGGCACTGGGATTGGTGACTCCA ATGGGCAGCTGGGCCACTGTTTCCAGGATGGCTTTGC 

jtt1d_111 10 RP11-414H17.1 ENSG00000214015 -1 6113666 G A GCTTCTTGACGGGGTGGACCAGGAGCTTCTGGAAGCC GCTGGGCAGCATGTACTCTGCTGCTCCCATAACCTGT 

jtt1d_112 10 RP11-414H17.1 ENSG00000214015 -1 6113693 C T TCTGGAAGCCGCTGGGCAGCATGTACTCTGCTGCTCC CATAACCTGTGCCAGGCATCAAAATTAGGCCCTTGAT 

jtt1d_113 10 RP11-414H17.1 ENSG00000214015 -1 6113782 C T GTTGTCAAGAGGAGTTGTTGATGCCTCTGCATTTCTG CCAGTTATGCTAATTTTGGGATATTGGCCTGACTGGT 

jtt1d_114 10 RP11-414H17.1 ENSG00000214015 -1 6113805 T A CCTCTGCATTTCTGCCAGTTATGCTAATTTTGGGATA TTGGCCTGACTGGTACTGGATGAACTTCTTGTCCTCT 

jtt1d_115 10 RBM17 ENSG00000134453 1 6152058 C T CAGTGTACGAGGAACAAGACAGACCGAGATCTCCAAC CGGACCTAGCAACTCCTTCCTCGCTAACATGGGGTAA 
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jtt1d_116 10 RBM17 ENSG00000134453 1 6154308 C T AGAAGACCAGCAAGCGTGGCGGCAAGATCATCGTGGG CGACGCCACAGAGAAAGGTGTGTCCCCAGGGAAGCGT 

jtt1d_117 10 RBM17 ENSG00000134453 1 6157654 G A TACCAAGACTCTTGGAAGGACTTCTAAGATATATGTT GATTGATCCCTTTTTTATTTTGTGGTTTTTTAATATA 

jtt1d_118 10 RBM17 ENSG00000134453 1 6158327 T G TTTTGGAAATGGCAGTTCCTTGGGGTCATGTTTCTAC TGGCAAAATTTGCAATAGTGTTCTATTGTATGTAATT 

jtt1d_119 10 RBM17 ENSG00000134453 1 6158386 C T CTATTGTATGTAATTTTAAAATTTATAAGATTATCCA CGTTGGCCAAGTAAACTGTACTGCCAATAGAATTCTG 

jtt1d_120 10 RBM17 ENSG00000134453 1 6158412 A G AAGATTATCCACGTTGGCCAAGTAAACTGTACTGCCA ATAGAATTCTGGAATTGTGAGAAATTGTATCATTGAA 

jtt1d_121 10 RBM17 ENSG00000134453 1 6158575 C T AGGTATTTCCAGAAAATACTCATGCCTGTGTTCTGTT CCTTGCTTTCCCAAATACTGCATGTGACTTTCCTAAG 

jtt1d_122 10 RBM17 ENSG00000134453 1 6158806 T C TAACATAAATAAAAGAATAACATTTTATCTTTTGTGG TATTATTTTATTGAATAAAATTGAGTTTTATGATAAA 

jtt1d_123 10 PFKFB3 ENSG00000170525 1 6191733 G A GTGCGTCCCTCCCAAAGCTGTGTGCTCGGTCCAAGAG GATGACCATCCCCAATAGAGGAGGACTCATCTTCAGT 

jtt1d_123 10 7SK ENSG00000201581 1 6191733 G A GTGCGTCCCTCCCAAAGCTGTGTGCTCGGTCCAAGAG GATGACCATCCCCAATAGAGGAGGACTCATCTTCAGT 

jtt1d_124 10 PFKFB3 ENSG00000170525 1 6191735 T C GCGTCCCTCCCAAAGCTGTGTGCTCGGTCCAAGAGGA TGACCATCCCCAATAGAGGAGGACTCATCTTCAGTCA 

jtt1d_124 10 7SK ENSG00000201581 1 6191735 T C GCGTCCCTCCCAAAGCTGTGTGCTCGGTCCAAGAGGA TGACCATCCCCAATAGAGGAGGACTCATCTTCAGTCA 

jtt1d_125 10 PFKFB3 ENSG00000170525 1 6191884 T C TAATATCCTCCAGTTCCATCCCAAGGATTTCACTCTT TTTTATGGCTGAGTAGTATTCCATGTTGTATATGTAC 

jtt1d_125 10 7SK ENSG00000201581 1 6191884 T C TAATATCCTCCAGTTCCATCCCAAGGATTTCACTCTT TTTTATGGCTGAGTAGTATTCCATGTTGTATATGTAC 

jtt1d_126 10 PFKFB3 ENSG00000170525 1 6259115 G A CCCCACCTCACTTCCACCAGGCGTTTTTCATCGAGTC GGTGTGCGACGACCCTACAGTTGTGGCCTCCAATATC 

jtt1d_127 10 PFKFB3 ENSG00000170525 1 6262702 C T TGGTGAACCGGGTGCAGGACCACATCCAGAGCCGCAT CGTGTACTACCTGATGAACATCCACGTGCAGCCGCGT 

jtt1d_128 10 PFKFB3 ENSG00000170525 1 6264883 G A AGCCAGTGATCATGGAGCTGGAGCGGCAGGAGAATGT GCTGGTCATCTGCCACCAGGCCGTCCTGCGCTGCCTG 

jtt1d_129 10 PFKFB3 ENSG00000170525 1 6266128 C T CCCCCATCCCACGCCCTCCAGGCTGCCGTGTGGAATC CATCTACCTGAACGTGGAGTCCGTCTGCACACACCGG 

jtt1d_130 10 PFKFB3 ENSG00000170525 1 6268205 G A GACCTAACCCGCTCATGAGACGCAATAGTGTCACCCC GCTAGCCAGCCCCGAACCCACCAAAAAGCCTCGCATC 

jtt1d_131 12 DGKA ENSG00000065357 1 56347577 C T CTTCTTGAGCTAAGGGGGACACCCTTGGCCTCCAAGC CAGCCTTGAACCCACCTCCCTGTCCCTGGACTCTACT 

jtt1d_132 12 SILV ENSG00000185664 -1 56348028 G A AGAGTACTCAGACCTGCTGCCCACTGAGGAGGGGGCT GTTCTCACCAATGGGACAAGAGCAGAAGATGCGGGGT 

jtt1d_133 12 SILV ENSG00000185664 -1 56351346 G A AGGTGTAGGAGAGGTCAGCTTCAGCCAGATAGCCACT GGGGTCATGGAGCTGGAGGGCAAAGGTCAGAGGCTGA 

jtt1d_134 12 CDK2 ENSG00000123374 1 56360876 G A GAGTTGTGTACAAAGCCAGAAACAAGTTGACGGGAGA GGTGGTGGCGCTTAAGAAAATCCGCCTGGACACGTGA 

jtt1d_135 12 CDK2 ENSG00000123374 1 56362711 T G TAGCAGACTTTGGACTAGCCAGAGCTTTTGGAGTCCC TGTTCGTACTTACACCCATGAGGTGAGTCCCTTTATG 

jtt1d_136 12 CDK2 ENSG00000123374 1 56365699 C A CTGAAGAGGGTTGGTATAAAAATAATTTTAAAAAAGC CTTCCTACACGTTAGATTTGCCGTACCAATCTCTGAA 

jtt1d_137 12 CDK2 ENSG00000123374 1 56365722 T A AATTTTAAAAAAGCCTTCCTACACGTTAGATTTGCCG TACCAATCTCTGAATGCCCCATAATTATTATTTCCAG 

jtt1d_138 12 CDK2 ENSG00000123374 1 56366031 A C AAAATGATTGGCCCCAGTCCCCTTGTTTGTCCCTTCT ACAGGCATGAGGAATCTGGGAGGCCCTGAGACAGGGA 

jtt1d_139 12 CDK2 ENSG00000123374 1 56366040 A T GGCCCCAGTCCCCTTGTTTGTCCCTTCTACAGGCATG AGGAATCTGGGAGGCCCTGAGACAGGGATTGTGCTTC 

jtt1d_140 12 CDK2 ENSG00000123374 1 56366160 G C TGTTTGAATTTTTCTCTTCCTTTTAGTATTCTTAGTT GTTCAGTTGCCAAGGATCCCTGATCCCATTTTCCTCT 

jtt1d_141 12 RAB5B ENSG00000111540 1 56367901 C G GCTGCAGCTGTTTGTCTGTTCGACACAGGCTTGGGGC CGACGGGGGAGACGGAGCCCCAGGTACCGAGCTGATG 

jtt1d_142 12 RAB5B ENSG00000111540 1 56374318 C T TCCTGATCTCCGGCCTCCTGACTTGAGCAAGATGTCC CGGGCCAGGGAACTAAAAGCCTCATCCACATTCATAC 
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jtt1d_142 12 AC034102.1 ENSG00000237493 -1 56374318 C T TCCTGATCTCCGGCCTCCTGACTTGAGCAAGATGTCC CGGGCCAGGGAACTAAAAGCCTCATCCACATTCATAC 

jtt1d_143 12 RAB5B ENSG00000111540 1 56374612 C T GGCTCCACGGTAGTAGGCAGTAGTTATTGTCTTGAAC CGCTCTTGGCCAGCTGTGTCCCAGACTTGTAGTTTGA 

jtt1d_143 12 AC034102.1 ENSG00000237493 -1 56374612 C T GGCTCCACGGTAGTAGGCAGTAGTTATTGTCTTGAAC CGCTCTTGGCCAGCTGTGTCCCAGACTTGTAGTTTGA 

jtt1d_144 12 RAB5B ENSG00000111540 1 56374695 G A CCTCTATATCCACAGTGCGGATCTTGAAATCAATTCC GATGGTGGAGATGTAAGTGTTGTTGAAGTTGTCCTCT 

jtt1d_144 12 AC034102.1 ENSG00000237493 -1 56374695 G A CCTCTATATCCACAGTGCGGATCTTGAAATCAATTCC GATGGTGGAGATGTAAGTGTTGTTGAAGTTGTCCTCT 

jtt1d_145 12 RAB5B ENSG00000111540 1 56374803 G A CCGAGTCCCCGATCAGCAGCAACTTGAAGAGGTGGTC GTAGGCTTTGGCCATGGCGGACACCGGGGGAGCCGGG 

jtt1d_146 12 RAB5B ENSG00000111540 1 56386076 A G CTAAGAAATAACCTCCATCCCTACCCCTCAGCACACA ACCCCTACGGTAACAGCACACTGAGCCCTGGCTCCCA 

jtt1d_147 12 RAB5B ENSG00000111540 1 56388136 G T CCCCCTTGGAGCAGGAGTGAAGATGTTTCATTATCTT GGGCCTGGGAAACCACTTCCCCAGGCTTCTCCCTCCC 

jtt1d_148 12 RAB5B ENSG00000111540 1 56388137 G T CCCCTTGGAGCAGGAGTGAAGATGTTTCATTATCTTG GGCCTGGGAAACCACTTCCCCAGGCTTCTCCCTCCCC 

jtt1d_149 12 SUOX ENSG00000139531 1 56391486 C T TGCGAGTCAGCCCTACCTGCACTGCTCTGGTCTAGTA CAAACAGGCTGCTGGCATTGAGGTAGGTGGCAGAGAG 

jtt1d_150 12 SUOX ENSG00000139531 1 56395378 G A ATCCCCAGTGGATAAGGGGGTACTACTGTACTTGTTG GCTCTTCATGTTAGCTCTGCTAGGCAGATGTCATTTC 

jtt1d_151 12 SUOX ENSG00000139531 1 56395420 T A TCATGTTAGCTCTGCTAGGCAGATGTCATTTCAGAGA TGAGGAAGCAAGTTCAGAACGGCTTGGAATCTTGCTC 

jtt1d_152 12 SUOX ENSG00000139531 1 56395439 C T CAGATGTCATTTCAGAGATGAGGAAGCAAGTTCAGAA CGGCTTGGAATCTTGCTCAGGAAATCGGGCTGGTTAA 

jtt1d_153 12 SUOX ENSG00000139531 1 56395577 T C ACCCATTTAGGCTGTCACTACTTTTTTTTCACTTTTT TATCCCTGTTTAAGTCAGTCTGACCCACAGTTGTCCT 

jtt1d_154 12 SUOX ENSG00000139531 1 56395689 G A TTGGTTTCGGTCCTTTAGGCCCTTCGCCCCAGGCATC GTTCTCTATGGTGGACAAAGTTCAGAATGGAAGATGG 

jtt1d_155 12 SUOX ENSG00000139531 1 56397807 C T CCCTGAGCTGCTGACAGAAAACTACATCACACCCAAC CCTATCTTCTTCACCCGGAACCATCTGCCTGTACCTA 

jtt1d_156 12 SUOX ENSG00000139531 1 56398348 A C TGGCTGGGCAGAGTGAGTGTGCAGCCAGAGGAAAGTT ACAGCCACTGGCAACGGCGGGATTACAAAGGCTTCTC 

jtt1d_157 12 SUOX ENSG00000139531 1 56398454 G C ACTCTGCTCCATCCATTCAGGAACTTCCTGTCCAGTC GGCCATCACAGAGCCCCGGGATGGAGAGACTGTAGAA 

jtt1d_158 12 SUOX ENSG00000139531 1 56398531 G A GGGGAGGTGACCATCAAGGGCTATGCATGGAGTGGTG GTGGCAGGGCTGTGATCCGGGTGGATGTGTCTCTGGA 

jtt1d_159 12 IKZF4 ENSG00000123411 1 56415076 T A TCTCCCCTCTCCTTCTCTCCCTCTCTCTCTCTCTCTC TCTCACACACACACACACACACACACTCAACACACAT 

jtt1d_160 12 IKZF4 ENSG00000123411 1 56415078 T A TCCCCTCTCCTTCTCTCCCTCTCTCTCTCTCTCTCTC TCACACACACACACACACACACACTCAACACACATAC 

jtt1d_161 12 IKZF4 ENSG00000123411 1 56415317 G A GCATACACCACCCGCACTCCCTCGCCGTTTCCAAGGC GGCGGCCGCGTTCGCACCCCAGGGTCTCACCGGCAAG 

jtt1d_162 12 IKZF4 ENSG00000123411 1 56415348 G A CAAGGCGGCGGCCGCGTTCGCACCCCAGGGTCTCACC GGCAAGGGAAGGATAATGTAAGTTCAGGCAGAAGGCG 

jtt1d_163 12 IKZF4 ENSG00000123411 1 56429575 A G AGCTTCTTGCTTTAAGTCCTCACCCTTTACATTATCT AATTCTTCAGTTTTGATGCTGATACCTGCCCCCGGCC 

jtt1d_164 12 IKZF4 ENSG00000123411 1 56429707 A G TACCTCTTGTGCCCTCTCACTTTAGGCAGCTTGCACT ATTCTTGAATGAATGAAGAATTATTTCCTCATTTGGA 

jtt1d_165 12 IKZF4 ENSG00000123411 1 56430367 C T TTCTCTCTTCTAATTTTCAGTATAACCAAAAATTATC CCAGCATGAGCACGGGCACGTGCCCTTCACCCCATTC 

jtt1d_166 12 IKZF4 ENSG00000123411 1 56430764 T C CAAGTTGTAACTCTTGGTCCTTCTCTCTCTCCTTTTC TCTTCCCTTCCTTCCCCTTCCATCTTTCTTTCCACAT 

jtt1d_167 12 IKZF4 ENSG00000123411 1 56431851 C T GCAGCTTCTTTCCTTGTGTACATAATATATATATATA CATATATATATATATTTTTAATCAGAAGTTATGAAGA 

jtt1d_168 12 RPS26P20 ENSG00000197728 1 56435929 C G ATGCTATATAGGAGGGCCCTGCCAGGCACCGTCTCCT CTCTCCGGTCCGTGCCTCCAAGATGGTGAGTCTTCTT 

jtt1d_169 12 RPS26P20 ENSG00000197728 1 56437235 A G CAATTCACAGCAAAGTAGTCAGGAATCGATCTCGTGA AGCCCGCAAGGACCGAACACCCCCACCCCGATTTAGA 
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jtt1d_170 12 ERBB3 ENSG00000065361 1 56473892 A T CCCTCTGCGTTCCTCCCTCCCTCTCTCTCTCTCTCTC ACACACACACACCCCTCCCCTGCCATCCCTCCCCGGA 

jtt1d_171 12 ERBB3 ENSG00000065361 1 56478809 G A GTCACAGTGGATTCGAGAAGTGACAGGCTATGTCCTC GTGGCCATGAATGAATTCTCTACTCTACCATTGCCCA 

jtt1d_172 12 ERBB3 ENSG00000065361 1 56481661 C T GGCCCAACCCCAACCAGTGCTGCCATGATGAGTGTGC CGGGGGCTGCTCAGGCCCTCAGGACACAGACTGCTTT 

jtt1d_173 12 ERBB3 ENSG00000065361 1 56486826 A C CTGGCCGCCCCACATGCACAACTTCAGTGTTTTTTCC AATTTGACAACCATTGGAGGCAGAAGCCTCTACAAGT 

jtt1d_174 12 ERBB3 ENSG00000065361 1 56487201 T C ATGTCACATCTCTGGGCTTCCGATCCCTGAAGGAAAT TAGTGCTGGGCGTATCTATATAAGTGCCAATAGGCAG 

jtt1d_175 12 ERBB3 ENSG00000065361 1 56490379 C T TCAAAGAGACAGAGCTAAGGAAGCTTAAAGTGCTTGG CTCGGGTGTCTTTGGAACTGTGCACAAAGTGAGTGAC 

jtt1d_176 12 ERBB3 ENSG00000065361 1 56494932 T C ACACCCAATGCCACGGGGATGCCTGGCATCAGAGTCA TCAGAGGGGCATGTAACAGGCTCTGAGGCTGAGCTCC 

jtt1d_177 12 ERBB3 ENSG00000065361 1 56494991 G A CTGAGGCTGAGCTCCAGGAGAAAGTGTCAATGTGTAG GAGCCGGAGCAGGAGCCGGAGCCCACGGCCACGCGGA 

jtt1d_178 12 ERBB3 ENSG00000065361 1 56494998 A T TGAGCTCCAGGAGAAAGTGTCAATGTGTAGGAGCCGG AGCAGGAGCCGGAGCCCACGGCCACGCGGAGATAGCG 

jtt1d_179 12 ERBB3 ENSG00000065361 1 56495049 C A CCCACGGCCACGCGGAGATAGCGCCTACCATTCCCAG CGCCACAGTCTGCTGACTCCTGTTACCCCACTCTCCC 

jtt1d_180 12 ERBB3 ENSG00000065361 1 56495339 C A TCAACCCCCAGGTACTCCCTCCTCCCGGGAAGGCACC CTTTCTTCAGTGGGTCTCAGTTCTGTCCTGGGTACTG 

jtt1d_181 12 ERBB3 ENSG00000065361 1 56496809 A G AGCCTTAAAGAGATGAAATAAATTAAGCAGTAGATCC AGGATGCAAAATCCTCCCAATTCCTGTGCATGTGCTC 

jtt1d_182 12 ERBB3 ENSG00000065361 1 56496940 A C TGTTTCTTGTTTTTGCACTGAATCAAGTCTAACCCCA ACAGCCACATCCTCCTATACCTAGACATCTCATCTCA 

jtt1d_183 12 PA2G4 ENSG00000170515 1 56503030 A G CATTTGATGTTGTACTTCTAGAACACACAAGTGACAG AAGCCTGGAACAAAGTTGCCCACTCATTTAACTGCAC 

jtt1d_184 12 PA2G4 ENSG00000170515 1 56504991 T C TTTTTGCCATAGGTGAATTTGTTGCCCAGTTTAAATT TACAGTTCTGCTCATGCCCAATGGCCCCATGCGGATA 

jtt1d_185 12 ZC3H10 ENSG00000135482 1 56514749 G C CCTTGGCCTTTCACCGGCTGACCTACCAAATGGCAAG GAGGAGGTCCCTATCTGCCGTGACTTTCTCAAGGGTG 

jtt1d_186 12 ZC3H10 ENSG00000135482 1 56516156 A G GTTGGACAATACAGGAATTGCTTCTGGGCCCTGGGAA AGCTGGGACCATAGTGCTCCAGCCCAAAGACTAGGGG 

jtt1d_187 12 ESYT1 ENSG00000139641 1 56527373 G T GGTATCTGATCTCTACTACATCTCAATTTCTTCTAGT GGTTCCCTCTACAAGGTGGGCAAGGCCAAGTTCACTT 

jtt1d_188 12 ESYT1 ENSG00000139641 1 56528164 G A CTGTCTACAGTACCAACTGCCCAGTGTGGGAGGAAGC GTTCCGGTTCTTCCTACAAGACCCTCAAAGCCAGGAG 

jtt1d_189 12 ESYT1 ENSG00000139641 1 56531154 T C GACCCTGTCACACGACTCCTGATAGCCAGTTTGGGAC TGAGGTGAGTCTATATCTGGAAAGGACTAGGGTCTGT 

jtt1d_190 12 ESYT1 ENSG00000139641 1 56531660 C T TCACATCAGTTCCAGGCCAAGAGCTAGAGGTTGAAGT CTTTGACAAGGACTTGGACAAGGATGATTTTCTGGGC 

jtt1d_191 12 ESYT1 ENSG00000139641 1 56532009 C T GACCCTGGAGGATGTCCCATCTGGCCGCCTGCACTTG CGCCTGGAGCGTCTCACCCCCCGTCCCACTGCTGCTG 

jtt1d_192 12 ESYT1 ENSG00000139641 1 56536711 G T TACAGTGAAGAACGAAAGCTGGTCAGCATTGTTCATG GTTGCCGGTGAGACCCCATCCCTCCTGTCCTCCAGAT 

jtt1d_193 12 ESYT1 ENSG00000139641 1 56537387 A C ATCTTCCAACACAGGTGCAGCTGGACCTAGCTGAGAC AGACCTTTCCCAGGGTGTAGCCCGGTGGTGAGTGTCT 

jtt1d_194 12 ESYT1 ENSG00000139641 1 56538340 T G GAGAGGGCTTTGGAGGACTTGGGACAGCAGGGCCAAT TTTTTTGCCCAAGTGCCTAGGCTGCTAACTCACTGAC 

jtt1d_195 12 MYL6 ENSG00000196465 1 56548970 C T CCCCACCAACGCCGAGGTGCTCAAGGTCCTGGGGAAC CCCAAGAGTGATGGTGAGGGGACCCTTGGGAACAATT 

jtt1d_196 12 MYL6 ENSG00000092841 1 56554411 G A CTTGTCTTCACCATGAATGTCTCTTCCTTCCTGCAGC GTTTGTGAGGCATATCCTGTCGGGGTGACGGGCCCAT 

jtt1d_197 12 MYL6 ENSG00000092841 1 56554415 G C TCTTCACCATGAATGTCTCTTCCTTCCTGCAGCGTTT GTGAGGCATATCCTGTCGGGGTGACGGGCCCATGGGG 

jtt1d_198 12 SMARCC2 ENSG00000139613 -1 56556817 T C TTAAAAACAAAACTGACATTCAGAGGGAAAGGAATCA TTGGCTGAGCTGGGGTGGCCTAAAACAGCAACAATGA 

jtt1d_199 12 SMARCC2 ENSG00000139613 -1 56556911 G C TTAGTACGAATGAACTCGAATAAGCTCAGCGTAGGGT GGGGGAGGGGAGTTGGGGCCTTGACTTAGTCACTAAA 
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jtt1d_200 12 SMARCC2 ENSG00000139613 -1 56556957 G A GAGTTGGGGCCTTGACTTAGTCACTAAAAAGGGGCTT GGGGAGAGATGGAATCTGCGCCCTGTTCTATCCCCAG 

jtt1d_201 12 SMARCC2 ENSG00000139613 -1 56557345 C T CATGCCTCTGTTAGGCATGGTGAGGGCTTTGGAGGGG CGGAAGGAGCTTTCCTTACGTAGTGATGAACTCTCCA 

jtt1d_202 12 SMARCC2 ENSG00000139613 -1 56558351 G C GGAGGAGCGGGGAGGTTAATACTGATGGAGTCAGCTA GACTACCAAATGGGATGATGGATGGAGCAGGAGGAGG 

jtt1d_203 12 SMARCC2 ENSG00000139613 -1 56558397 C T ATGGGATGATGGATGGAGCAGGAGGAGGAGGAGGAGG CGGCATGCCAAAAGGCAAACCCAAAGGAGCATTACCC 

jtt1d_204 12 SMARCC2 ENSG00000139613 -1 56559142 A G GGGGTCCAGGGGGGGGAACCCCTGGTGGGACTGCCCC AGGCTGGGGGGCTCCAGCTGGTTGCTGCTGCTGTGGC 

jtt1d_205 12 RNF41 ENSG00000181852 -1 56599106 C A GGTTACAGAGGTTTGGGGCAGATATCGTAAGTTCAGC CGAGGACTCCCTTGGCTCTTCCTATATTAAAGCCAAA 

jtt1d_206 12 RNF41 ENSG00000181852 -1 56599270 A T GTTTCAAGTTTGATTTTTTTTTCTTTTTTCCTTTCTT AAAAAAAAAAAAAGGAAGTAAATAAATTAAATTGCCA 

jtt1d_207 12 RNF41 ENSG00000181852 -1 56599366 G A GATCAGGCCATTCTTAAAAAAAAGAGGGGGGGGGGCA GTAGGTGGAGTTTGTGAAATATAAACAAACAATGGCC 

jtt1d_208 12 RNF41 ENSG00000181852 -1 56599769 T C GCCATCAGTGATGGCCAATTAACGGCCTCACTACTTA TTTCTAGAGATTTGGCTCCACCCTTACCATTTCTTCA 

jtt1d_209 12 RNF41 ENSG00000181852 -1 56600095 T C CCTGAAAGGCTGAGCAAACTACCCCAAGGCCCTTCAG TGCCAGAAGGGCAGGGAGATGTGTGGCTCAGGTATAA 

jtt1d_210 12 RNF41 ENSG00000181852 -1 56600528 C T AGCGCTTGATTACAGCCTGGAGCACAGCATCAGGAGT CGAGATCATCCCTCCCCAGCGGGTCACTCTTGCTGGC 

jtt1d_211 12 OBFC2B ENSG00000139579 1 56618292 G A GATGGACCGAGTCCCGGCTTGTCGGGATGAGGGTTCC GGAAGATCTGGCCAGTAAGATTCTACTCCCTGGCTGT 

jtt1d_212 12 OBFC2B ENSG00000139579 1 56618305 A C CCGGCTTGTCGGGATGAGGGTTCCGGAAGATCTGGCC AGTAAGATTCTACTCCCTGGCTGTGCACCGGGTTCCC 

jtt1d_213 12 OBFC2B ENSG00000139579 1 56618412 C A GCTTGAGACTAAAAGAGCATCCCGGCAGGGGGCCTTC CAGCCCCAAAGCAGCCTGTCCAGAGACCCCCAAATTC 

jtt1d_214 12 OBFC2B ENSG00000139579 1 56623347 C T GGAGTTCAAGACCAGCCTGACCAACATGGAGAAACCC CGTGTCTACTAAAAATACAGAATTAGCCAGGCATGGT 

jtt1d_215 12 OBFC2B ENSG00000139579 1 56623525 A G AGCCTGGGCAATAAGAGCGAAACTCCATCTCAAAAAA AAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAATGGCA 

jtt1d_216 12 OBFC2B ENSG00000139579 1 56623529 G A TGGGCAATAAGAGCGAAACTCCATCTCAAAAAAAAAA GAAAGAAAGAAAGAAAGAAAGAAAGAAATGGCAGTTA 

jtt1d_217 12 OBFC2B ENSG00000139579 1 56623533 G A CAATAAGAGCGAAACTCCATCTCAAAAAAAAAAGAAA GAAAGAAAGAAAGAAAGAAAGAAATGGCAGTTACCAT 

jtt1d_218 12 SLC39A5 ENSG00000139540 1 56625045 T C TCGGGGAGAATAGGAGCCAGAACCTGAGCCCCTAAGC TATTCCCCTCACCAATGATGGGGTCCCCAGTGAGTCA 

jtt1d_219 12 SLC39A5 ENSG00000139540 1 56626535 G T GATGTCTGGGCAGGGATGCCTCTGGGTCCCTCAGGGT GGGGTGACCTGGAAGAGTCAAAGGCCCCTCACCTACC 

jtt1d_221 12 SLC39A5 ENSG00000139540 1 56628700 G A TGACCCCTCGTCAGTTTGCTCTGCTGTGCCCAGCCCT GCTTTATCAGATCGACAGCCGCGTCTGCATCGGCGCT 

jtt1d_222 12 SLC39A5 ENSG00000139540 1 56628706 T C CTCGTCAGTTTGCTCTGCTGTGCCCAGCCCTGCTTTA TCAGATCGACAGCCGCGTCTGCATCGGCGCTCCGGCC 

jtt1d_223 12 SLC39A5 ENSG00000139540 1 56630444 G C CCACCAGCTCTGGCCCCTCCTGGGCACCAAGGCCACA GTCATGGGCACCAGGGTGGCACTGATATCACGTGGAT 

jtt1d_224 12 SLC39A5 ENSG00000139540 1 56630764 G A CTGATGGCTTCTCCAGCGGCCTCAGTACCACCTTAGC GGTCTTCTGCCATGAGCTGCCCCACGAACTGGGTAGG 

jtt1d_225 12 SLC39A5 ENSG00000139540 1 56630985 T C CTGCTCCAGTCAGGGCTGTCCTTTCGGCGGCTGCTGC TGCTGAGCCTCGTGTCTGGAGCCCTGGGATTGGGGGG 

jtt1d_226 12 ANKRD52 ENSG00000139645 -1 56632048 G A TTCTCTTTACTTCCTACAACCGAGTACATGGGTCACA GGGTGGAGGGTGCAACAGGACATGGAACATGCCCCTC 

jtt1d_227 12 ANKRD52 ENSG00000139645 -1 56632575 A C CACACATACAAAGCTGAGCTATCCAGGAACACAAGGG AAACAAGGAGATTGTCCAGGGTGGGAGCGGAGGCAGC 

jtt1d_228 12 ANKRD52 ENSG00000139645 -1 56633003 G A ATTTGGTCGCTTCTCTAGGGGTTGGGTTGGGAGGAGG GAGCCCCCAAGGCAGACCCTTCCCTCTCTACCTCCCG 

jtt1d_229 12 ANKRD52 ENSG00000139645 -1 56633209 C A CTTAAAAGGTAGGGTTCAAACTAGGCGGGATGGGGGC CCATACTGGTTTGCCCCAGGAGTAGGGTTTCTGGGCT 

jtt1d_230 12 ANKRD52 ENSG00000139645 -1 56633732 C T GGGCCATGGCTGGGGTTGGAGAGGGAGGTAGGCCCTC CTCAGCCCCTCCACCCCAAGAAACACATCTACGTGGG 
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jtt1d_231 12 ANKRD52 ENSG00000139645 -1 56634583 C G GAGGACTCCCCACCACCTCCCAGCACTGCTGACAGTG CGCTGAGGGCAGCAGGGCGCAGACAGCCCCCAGAAAT 

jtt1d_232 12 ANKRD52 ENSG00000139645 -1 56634639 G C CAGACAGCCCCCAGAAATCTCATCTAGCAAGACAACG GGGCTCTGACACTCAGACGCTTCCCGCCATCACCAAA 

jtt1d_233 12 ANKRD52 ENSG00000139645 -1 56634891 T G TTGGGGATGGGGGCTGCAGCCCTTAAGAGAGGTCACA TTGATTGTCATATAGGGGAGGACACGGTGTGGAGGGA 

jtt1d_234 12 ANKRD52 ENSG00000139645 -1 56635080 G C GAACTGAGGGTTGGGAGAAGCAAAACACAGAGAGACA GGGGATCAAAAGGGACCATGAAAAGATAAGGACTTGG 

jtt1d_235 12 ANKRD52 ENSG00000139645 -1 56635640 G A CCCTCTTCACTCCAGCCCAGTTTGGCTTTTGGGGTGC GACTTTAGAAATCTTATCAGTGCAGCCCCCAGCTCAA 

jtt1d_236 12 ANKRD52 ENSG00000139645 -1 56636170 G A CTCCCAAAAGAAGATAAAAGAAAGAAGCAAGGTTAAA GTGCGTGGTTAGGGGCCAGGCTAGGAGTGGGAGGGAA 

jtt1d_237 12 ANKRD52 ENSG00000139645 -1 56636530 A C GACCGGCCGAGCAGGGAGGCAGTGATGGGTATGGAAG AAGAGGGGATCTGCCTGGCAGTAGGGGCAGGGGAGAA 

jtt1d_238 12 ANKRD52 ENSG00000139645 -1 56636962 G A GCTACTCAGAGTAGCAGCCATCTAACCCAATGGCGCC GGGCCGCTCCTGGCTGTAGGGGCAGGAGGCCCCATGG 

jtt1d_239 12 ANKRD52 ENSG00000139645 -1 56636975 C G GCAGCCATCTAACCCAATGGCGCCGGGCCGCTCCTGG CTGTAGGGGCAGGAGGCCCCATGGGGCAGGGCGCCGC 

jtt1d_240 12 ANKRD52 ENSG00000139645 -1 56639366 A C ATGCGTCGTGGTCCAGCAGGGCAGCCAGGCAGTCCTC ACAGCCAGTCACTGCCTGTGAGTAACATGGGGGTGTG 

jtt1d_241 12 ANKRD52 ENSG00000139645 -1 56645975 A G GGACCAGACTGGTAGCCTCACCTCCTGTAAGTGTCAG AAGCGGCAGCGTAGTGGAGGGGAGAGCAGCCTTTACA 

jtt1d_242 12 ANKRD52 ENSG00000139645 -1 56645978 C G CCAGACTGGTAGCCTCACCTCCTGTAAGTGTCAGAAG CGGCAGCGTAGTGGAGGGGAGAGCAGCCTTTACAGTC 

jtt1d_243 12 ANKRD52 ENSG00000139645 -1 56645996 G T CTCCTGTAAGTGTCAGAAGCGGCAGCGTAGTGGAGGG GAGAGCAGCCTTTACAGTCGGCCTCGTTGACACCTGC 

jtt1d_244 12 ANKRD52 ENSG00000139645 -1 56645997 A G TCCTGTAAGTGTCAGAAGCGGCAGCGTAGTGGAGGGG AGAGCAGCCTTTACAGTCGGCCTCGTTGACACCTGCC 

jtt1d_245 12 ANKRD52 ENSG00000139645 -1 56647911 G C TATTAACCAGTAGCTCCAAGCAGAGAGCGCCATTGGT GGAGACTGCAGCCACATGCAGTGGCGTGAAGCCCTTG 

jtt1d_246 12 ANKRD52 ENSG00000139645 -1 56649601 A G TCACCTCAAGATGCCCACTATGCACTGCATGGTGCAG AGCACTGCGCCCGCTCCTGTCAGCCACGTTGAGGCTG 

jtt1d_247 12 ANKRD52 ENSG00000139645 -1 56651618 A T GGTCTCGCCATCCTCCCTGCTCCCAACTCACCAGCAC ATTGATGTTCTCCTTCTGCGAGAGTAGGGAACGCACT 

jtt1d_248 12 COQ10A ENSG00000135469 1 56662842 G A GCTGGCAGCTCCTTGGCCTGTGATTCTTCTTCTCCTA GGTACTCAATGCAGGAGATGTATGAGGTGGTGTCCAA 

jtt1d_249 12 COQ10A ENSG00000135469 1 56664041 G A AGAATGTTGCTGCCTTTGAGCGTCGGGCAGCCACCAA GTTTGGTCCAGAAACAGCCATCCCCCGTGAACTGATG 

jtt1d_250 12 COQ10A ENSG00000135469 1 56664084 G T TCCAGAAACAGCCATCCCCCGTGAACTGATGTTCCAT GAGGTGCACCAGACTTGAGGCAAGGGATTGCTCCCTG 

jtt1d_251 12 COQ10A ENSG00000135469 1 56664231 C T AGTCTGTGTTCATAATACTGTTTCTCCTCTCAATTTC CCAGAAATTGGGTTCTATGCTGGCTGGAAATGTTGGG 

jtt1d_252 12 COQ10A ENSG00000135469 1 56664433 T C CCTTATCAAGACACCTTAGTGTCTGACCAGGGGACGA TAGTAACTTTTCTAAGGATTGAATAAATTGAGCTTTT 

jtt1d_253 12 COQ10A ENSG00000135469 1 56664743 A G TGGCCTGAGTTTTTATAAAATTTCAATAAATTGTGAC AGTGTGAATTTGGCTTTATTATATTGTTTCTTGGGGC 

jtt1d_254 12 CS ENSG00000062485 -1 56666514 G A CTTATTGAGGGCTTGGCAGAGAAGCTAAAGCTCCAAA GTGACTACAGATTCTCTGCAACCGGCTTTGACCCATG 

jtt1d_255 12 CS ENSG00000062485 -1 56666524 A T GCTTGGCAGAGAAGCTAAAGCTCCAAAGTGACTACAG ATTCTCTGCAACCGGCTTTGACCCATGGAAACAGGAG 

jtt1d_256 12 CS ENSG00000062485 -1 56667528 G A ATTAGGCAGGTGTTTCAGAGCAAACTCTCGCTGACAG GTATATCGCGGATCAGTCTTCCTTAGTACTGCATGGC 

jtt1d_257 12 CS ENSG00000062485 -1 56669799 G A TTGCTGGGTCTAGCTTACCTGTGGATGGTGAGGTACA GGCGCGTGAGCTCAGTGAACTGATGATCAGTATAGCC 

jtt1d_258 12 CS ENSG00000062485 -1 56679751 A G TTTGGCCCACCACCGTCTTGCCATGTTGCTGCCTGAA AGTCTTAATTCTGGCCTGCTCCTTAGGTATCAGGTCA 

jtt1d_259 12 CNPY2 ENSG00000144785 -1 56705028 G A TCACCGCAAACTTGAGGGTGCCGCTAATATCTGAGTC GATTCGGATGCCTTGTAGGTCCAGTTCACTGGATTCT 

jtt1d_260 12 CNPY2 ENSG00000144785 -1 56708706 C T CGGAAAGATCCCATCTGAATGGTCTTCTTGGGGTCCA CCTGGGCAATTTCCCATTCTAGTTCATCCACCAGAGC 
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jtt1d_261 12 CNPY2 ENSG00000144785 -1 56709652 G A AGGGCCGCCGCCGTGGCCCAAGCGCTGGAAGACCGCT GGACTCTCACTTTGGCCCCAGTGGCTCCCGAAACTAC 

jtt1d_262 12 PAN2 ENSG00000135473 -1 56711066 C G TGTCCAGGACTTCAATCCCTAGCCAGCTAGGAACTTA CAGTTATGGTTCCAGGAGCTTCTCTGCCTGGATATTA 

jtt1d_263 12 PAN2 ENSG00000135473 -1 56711235 G A TGAATCTGGCTCCTAGAACCTTTGCAACAATTCTGCT GTGTTCCAGTTCAATTAATAGCACCATCTGTGACCCT 

jtt1d_264 12 PAN2 ENSG00000135473 -1 56711371 C T CCAGTTCTGGGGCTATAGAACAGTAAAGGGAGAGGGC CGTGGTTCTTTGGGAAGGGTAGTCAGAGCGCCAGCAC 

jtt1d_265 12 PAN2 ENSG00000135473 -1 56716948 A C GAATGGAGAAAGGAAGCCAGACGTTCTTCAACTCCTC AATGGAGGGACACACCAGCACACCCTCTGGACTCCCT 

jtt1d_266 12 PAN2 ENSG00000135473 -1 56718422 T C AGAGGTCCAACATGTGAAACAGGAAGCCCAGCTCACA TGCCAGACAGAACTCCTTCTGGCAAAGGTGGTTTTGA 

jtt1d_267 12 PAN2 ENSG00000135473 -1 56718817 G A ACCCAACCCTTACCTGGATCATGCAGTTACAGTAGGC GTTGGGAATGTGGGGCTCTAATCCAGCAAACAAGGTC 

jtt1d_268 12 PAN2 ENSG00000135473 -1 56722060 T G TTCTGAGTCTCCTGGACAGTGTTAAGATCAATCTCTA TTATGTGATTCTGCAGCCCACCAACGAGTAGAGTGCT 

jtt1d_269 12 PAN2 ENSG00000135473 -1 56727705 G A TTTTGGAGCGCGTGGAATTAGAACGAGTAGGGGGAGC GCAAGCGCTGTCAGCTCCGCGGGAAATTCCAGTTTCC 

jtt1d_270 12 IL23A ENSG00000110944 1 56733531 G A ACCAGGGTCTGATTTTTTATGAGAAGCTGCTAGGATC GGATATTTTCACAGGGGAGCCTTCTCTGCTCCCTGAT 

jtt1d_271 12 STAT2 ENSG00000170581 -1 56735599 A G GGAATAGCTAAGGTGTGAGATTGTCCAGAGTCCTATG ACAGACCTTCAAGGTTTTAAGTTCCACAGACTTGGAC 

jtt1d_272 12 STAT2 ENSG00000170581 -1 56735990 G T ATCTGTAATCCCAGCTACTGGGGAGGCTGAGGCAGGA GAGTCACTTGAACCCGGAAGGCGGAGGTTGCAGTGAG 

jtt1d_274 12 STAT2 ENSG00000170581 -1 56737126 G T TGATTCCCATCCTTGGAGAACAATATCATGCTATGAG GAGTAGGAAGGGCAAGAGATATGAAAAGAACAGAGGA 

jtt1d_275 12 STAT2 ENSG00000170581 -1 56737251 C A GGCTGGGGCGGGAGACGTAAACCTCATCCACGGTGTT CTGGCCAGCCAACAGTGGGTCACCATTCGGCATGATT 

jtt1d_276 12 STAT2 ENSG00000170581 -1 56740682 C G CTGACGATTCACTGAAGCGCAGTAGAAAGGTGCCAGA CATGGTCTTCTTCAGCAGCCGGCGCTCCTGGCTCCGA 

jtt1d_277 12 STAT2 ENSG00000170581 -1 56742994 C A GGGCTGAGCAAATTGAACCAGAGAACTGAAGCCCAGG CAATTGAGAGCTGGTTCATGTTGGAAATAATCACCAC 

jtt1d_278 12 STAT2 ENSG00000170581 -1 56742997 T C CTGAGCAAATTGAACCAGAGAACTGAAGCCCAGGCAA TTGAGAGCTGGTTCATGTTGGAAATAATCACCACAGG 

jtt1d_279 12 STAT2 ENSG00000170581 -1 56744612 C G GCCCGTGTCCTGGCCACCCTTCACCTGCTCCAATTTA CCTGTCAATGGAGACTTCCACAGTCAGTGACTCATTG 

jtt1d_280 12 STAT2 ENSG00000170581 -1 56745195 C T TAACCAGGCAACTCAGTCCCTTCAGCTCCTTCAGCAG CTGCCTCAGGTGAAACAACAGCTTTGCTCCAGCTGTG 

jtt1d_281 12 STAT2 ENSG00000170581 -1 56753870 C T GGCCCGTACCTGATTAGGGTTGCAGTCCCCGCGCCCT CCAATGGCTCTGGTCGCGACTTCCCGTCCCTAGTATG 

jtt1d_282 12 APOF ENSG00000175336 -1 56754466 C T GCGATCTCGGCTCGCTGCAGCCTCGACCTCCCAGGCT CAGGTGATTCTCCCGCCTCAGCCTCCCAGGTAGTTGG 

jtt1d_283 12 APOF ENSG00000175336 -1 56755058 A G ACTCCCAGCCCCAGGATCTAAGTCATAGCTCTTGATT ATGGCCCACCCCCAGTAGGGAGCTGAACTTACTACTT 

jtt1d_284 12 APOF ENSG00000175336 -1 56755120 T C AACTTACTACTTCTGATATGAAAGAAGCCAGAGTAGT TGTTTCTTCCAAGTCACTCACATCTGAGATGGCCCTC 

jtt1d_285 12 APOF ENSG00000175336 -1 56755474 C G GCTGGACTACATTGTGCACAGCTTGCTCCTTCTCATT CTCACAGTCCTCTGTCGGGAGGGAGCGCCCGACCCTT 

jtt1d_286 12 APOF ENSG00000175336 -1 56755793 T G GTGGCTGAAACCAGGCAGTGACTTTGGGTGCAGAAAT TGGCAGGACAAGGGGTCTGAGGAGGGTGTCTGGGATT 

jtt1d_287 16 CIITA ENSG00000179583 1 10992793 C A TTGGTCTCTGGTTTTTCTCAAAGTAGAGCACATAGGA CCAGATGAAGTGATCGGTGAGAGTATGGAGATGCCAG 

jtt1d_288 16 CIITA ENSG00000179583 1 10995933 A G TGAGCCCCCCACTGTGGTGACTGGCAGTCTCCTAGTG AGACCAGTGAGCGACTGCTCCACCCTGCCCTGCCTGC 

jtt1d_289 16 CIITA ENSG00000179583 1 10998628 C G CCATCTCCAGAGCACAAGACGTCCCCCACCCAATGCC CGGCAGCTGGAGAGGTCTCCAACAAGCTTCCAAAATG 

jtt1d_290 16 CIITA ENSG00000179583 1 11000848 G C TTGAAGAGACCTGACCGCGTTCTGCTCATCCTAGACG GCTTCGAGGAGCTGGAAGCGCAAGATGGCTTCCTGCA 

jtt1d_291 16 CIITA ENSG00000179583 1 11001032 C T CCCGGGGCCGCCTGGTCCAGAGCCTGAGCAAGGCCGA CGCCCTATTTGAGCTGTCCGGCTTCTCCATGGAGCAG 
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jtt1d_292 16 CIITA ENSG00000179583 1 11001421 C A CAGTTCCCATCCGCAGACGTGAGGACCTGGGCGATGG CCAAAGGCTTAGTCCAACACCCACCGCGGGCCGCAGA 

jtt1d_293 16 CIITA ENSG00000179583 1 11001671 C T TCTTCCAGCCTCCCGCCCGCTGCCTGGGAGCCCTACT CGGGCCATCGGCGGCTGCCTCGGTGGACAGGAAGCAG 

jtt1d_294 16 CIITA ENSG00000179583 1 11001680 G T CTCCCGCCCGCTGCCTGGGAGCCCTACTCGGGCCATC GGCGGCTGCCTCGGTGGACAGGAAGCAGAAGGTGCTT 

jtt1d_295 16 CIITA ENSG00000179583 1 11001691 C T TGCCTGGGAGCCCTACTCGGGCCATCGGCGGCTGCCT CGGTGGACAGGAAGCAGAAGGTGCTTGCGAGGTACCT 

jtt1d_296 16 CIITA ENSG00000179583 1 11001694 T C CTGGGAGCCCTACTCGGGCCATCGGCGGCTGCCTCGG TGGACAGGAAGCAGAAGGTGCTTGCGAGGTACCTGAA 

jtt1d_297 16 CIITA ENSG00000179583 1 11001743 G A AGAAGGTGCTTGCGAGGTACCTGAAGCGGCTGCAGCC GGGGACACTGCGGGCGCGGCAGCTGCTGGAGCTGCTG 

jtt1d_298 16 CIITA ENSG00000179583 1 11001770 G T GGCTGCAGCCGGGGACACTGCGGGCGCGGCAGCTGCT GGAGCTGCTGCACTGCGCCCACGAGGCCGAGGAGGCT 

jtt1d_299 16 CIITA ENSG00000179583 1 11001821 C T GCGCCCACGAGGCCGAGGAGGCTGGAATTTGGCAGCA CGTGGTACAGGAGCTCCCCGGCCGCCTCTCTTTTCTG 

jtt1d_300 16 CIITA ENSG00000179583 1 11001914 G A CTGATGCACATGTACTGGGCAAGGCCTTGGAGGCGGC GGGCCAAGACTTCTCCCTGGACCTCCGCAGCACTGGC 

jtt1d_301 16 CIITA ENSG00000179583 1 11002904 G A TGAGGCCCTCCCTCCACAGGGCTGCCTTGAGCGACAC GGTGGCGCTGTGGGAGTCCCTGCAGCAGCATGGGGAG 

jtt1d_302 16 CIITA ENSG00000179583 1 11002927 A G GCCTTGAGCGACACGGTGGCGCTGTGGGAGTCCCTGC AGCAGCATGGGGAGACCAAGCTACTTCAGGCAGCAGA 

jtt1d_303 16 CIITA ENSG00000179583 1 11016045 C T CCTCTGTTTCCGACAGCTTGTACAATAACTGCATCTG CGACGTGGGAGCCGAGAGCTTGGCTCGTGTGCTTCCG 

jtt1d_304 16 CIITA ENSG00000179583 1 11016265 G C CAAGGGCCAGGCCCCAAGGTGAGTTTCTCTTGCCAGC GTCCAGTACAACAAGTTCACGGCTGCCGGGGCCCAGC 

jtt1d_305 16 CIITA ENSG00000179583 1 11017815 T C TACTTGTGGACACAGCTCTTCTCCAGGCTGTATCCCA TGAGCCTCAGCATCCTGGCACCCGGCCCCTGCTGGTT 

jtt1d_306 16 CIITA ENSG00000179583 1 11017869 C T GCACCCGGCCCCTGCTGGTTCAGGGTTGGCCCCTGCC CGGCTGCGGAATGAACCACATCTTGCTCTGCTGACAG 

jtt1d_307 16 CIITA ENSG00000179583 1 11017870 G A CACCCGGCCCCTGCTGGTTCAGGGTTGGCCCCTGCCC GGCTGCGGAATGAACCACATCTTGCTCTGCTGACAGA 

jtt1d_308 16 CIITA ENSG00000179583 1 11017973 C T CCCAGTTGGGTGGATGCCTGGTGGCAGCTGCGGTCCA CCCAGGAGCCCCGAGGCCTTCTCTGAAGGACATTGCG 

jtt1d_309 16 CIITA ENSG00000179583 1 11018402 C T CAAGCGTGAGCCACTGCACCGGGCCACAGAGAAAGTA CTTCTCCACCCTGCTCTCCGACCAGACACCTTGACAG 

jtt1d_310 16 CIITA ENSG00000179583 1 11018447 G A CCCTGCTCTCCGACCAGACACCTTGACAGGGCACACC GGGCACTCAGAAGACACTGATGGGCAACCCCCAGCCT 

jtt1d_311 16 CIITA ENSG00000179583 1 11018622 T C GGCCAGATGCACCAGCCCTTAGCAGGGAAACAGCTAA TGGGACACTAATGGGGCGGTGAGAGGGGAACAGACTG 

jtt1d_312 16 CIITA ENSG00000179583 1 11018623 G A GCCAGATGCACCAGCCCTTAGCAGGGAAACAGCTAAT GGGACACTAATGGGGCGGTGAGAGGGGAACAGACTGG 

jtt1d_313 16 CIITA ENSG00000179583 1 11023208 T C TGCAGGGAGGCAAACTCTGGCTGGGTTCCTGTAAACA TCCATCGCAGCTGCAAATAATCAGAAGCCAAGGCCAG 

jtt1d_313 16 DEXI ENSG00000182108 -1 11023208 T C TGCAGGGAGGCAAACTCTGGCTGGGTTCCTGTAAACA TCCATCGCAGCTGCAAATAATCAGAAGCCAAGGCCAG 

jtt1d_314 16 CIITA ENSG00000179583 1 11023406 G T TCAAACAGGAACCTCTCTGTTGGCACGAAGCTTTTGA GGGGAGCAGGTCTAACAAGAAGGAAAAAGGGGGGTTA 

jtt1d_314 16 DEXI ENSG00000182108 -1 11023406 G T TCAAACAGGAACCTCTCTGTTGGCACGAAGCTTTTGA GGGGAGCAGGTCTAACAAGAAGGAAAAAGGGGGGTTA 

jtt1d_315 16 CLEC16A ENSG00000038532 1 11038360 C T GCCGCCGAAGGCCACGCGGGTGAACTGCATTTCCCAG CGCCCCACGCGGCGGCGGCCGTAAAGCGCGGCGGTCG 

jtt1d_316 16 CLEC16A ENSG00000038532 1 11038464 T C GGGCTGTGGGCCGGGGAGGAAGGCGGCTCGCGGTTCC TCCACCGCCTCCGCCGCCGCATCCTCCGCTTGTGCTA 

jtt1d_317 16 CLEC16A ENSG00000038532 1 11038467 A C CTGTGGGCCGGGGAGGAAGGCGGCTCGCGGTTCCTCC ACCGCCTCCGCCGCCGCATCCTCCGCTTGTGCTACCG 

jtt1d_318 16 CLEC16A ENSG00000038532 1 11038558 G T CTCTGCTGGTCCGGCATGAGACCGTGAGACGAGAGAC GGGTCGGGGCCGCCGACATGTTTGGCCGCTCGCGGAG 

jtt1d_319 16 CLEC16A ENSG00000038532 1 11056378 C T TCTTCTTGAACATCTTGCGGCAAAAGTCGGGCCGTTA CGTGTGCGTTCAGCTGCTGCAGACCTTGAACATCCTC 
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jtt1d_320 16 CLEC16A ENSG00000038532 1 11056426 C A AGCTGCTGCAGACCTTGAACATCCTCTTTGAGAACAT CAGTCACGAGACCTCACTTTGTAAGGACATTCCTTGG 

jtt1d_321 16 CLEC16A ENSG00000038532 1 11073195 C T CTCTCTCTCTCCTGCCACCCTGCACTAGGGAGGAGAA CGGCCGAAAATTAGCCTGCCGGTGTCTCTTTATCTTC 

jtt1d_322 16 CLEC16A ENSG00000038532 1 11076776 A G TCTTAATTATACATCATGCACCGCTGGTGAACTCGTT AGCTGAAGTCATTCTGAATGGTGATCTGTCTGAGATG 

jtt1d_323 16 CLEC16A ENSG00000038532 1 11154770 G A CTCTGCTCTCTGAACTGTTGGTCCAGGCCATCCGGGT GTTCTTCATGCTGCGTTCCCTGTCACTGCAATTGCGA 

jtt1d_324 16 CLEC16A ENSG00000038532 1 11220123 G A GCTGCCCTTCCTCTCTCAGAAGCCCCGTCGGCTGGCA GCACCAGCTTCTTAGAATTTGTCAAAGCACAGCGCAA 

jtt1d_325 16 CLEC16A ENSG00000038532 1 11260274 C T TCTTGCAGGCTTCGCCGTGGCCCAGTGCATAAACCAG CACAGCTCCCCGTCCCTGTCCTCACAGTCGCCACCCT 

jtt1d_326 16 CLEC16A ENSG00000038532 1 11260278 G A GCAGGCTTCGCCGTGGCCCAGTGCATAAACCAGCACA GCTCCCCGTCCCTGTCCTCACAGTCGCCACCCTCCGC 

jtt1d_327 16 CLEC16A ENSG00000038532 1 11272287 G A CAACGAAACGGAAGCAGACTCTAAGCCCAGCAAGAAC GTGGCCAGGAGCGCAGCCGTGGAGACAGCCAGCCTGT 

jtt1d_328 16 CLEC16A ENSG00000038532 1 11272330 G A AGGAGCGCAGCCGTGGAGACAGCCAGCCTGTCCCCCA GCCTCGTCCCTGCCCGGCAGCCCACCATTTCCCTGCT 

jtt1d_329 16 CLEC16A ENSG00000038532 1 11272572 G A CGCTGAGGACTGAGTCAGTGCCGGGGCCTCCCTTTGT GTGTGTGGCCCCGCTGGTAGGGACCCCAGTGCCGCTG 

jtt1d_330 16 CLEC16A ENSG00000038532 1 11272740 C T CCCCACGTTGTCCTTGAATTCCTTTTTCACTTTGCAT CTCTTCACGTGCAGGCTGGGACCAGCGGAGACACCGC 

jtt1d_331 16 CLEC16A ENSG00000038532 1 11273405 C A TTTCTCCAGGAAAAGGAGGAATGTAGCCAGCTCCCCA CTCAGGACGCTTCCTCATTTCTCTTCACCAAAACCAA 

jtt1d_332 16 CLEC16A ENSG00000038532 1 11273459 C T TTTCTCTTCACCAAAACCAAACAGAGACAGCTTCCAG CACCTTCTTCAGTGTTACCATCTCTAAGAAGGAACCA 

jtt1d_333 16 CLEC16A ENSG00000038532 1 11274064 C G AGAACATGGTCTCTGTCTCCTCGGCCCAGCCAGCTGT CCCGGCAAGGCCTGCCGAGGGCAGTTTTCAACCTCAT 

jtt1d_334 16 CLEC16A ENSG00000038532 1 11274079 C T TCTCCTCGGCCCAGCCAGCTGTCCCGGCAAGGCCTGC CGAGGGCAGTTTTCAACCTCATGAAGGAAACACAGTC 

jtt1d_335 16 CLEC16A ENSG00000038532 1 11274456 A G CCTGTGTGTTGCTTAATTTTTTAAGAGCAAGAGGGGT AGAGAGGATCAAGCTGGCCCTGGCTGGAGATGGCTAG 

jtt1d_336 16 CLEC16A ENSG00000038532 1 11274485 A C AGAGGGGTAGAGAGGATCAAGCTGGCCCTGGCTGGAG ATGGCTAGCCCCTGAGACATGCACTTCTGGTTTTGAA 

jtt1d_337 16 CLEC16A ENSG00000038532 1 11274748 T C GGGCTGGACAGCATGCCCGGGAGGACCAGCAGAGGAT TAAAGGTGACTGGGAGGACCAGCGGAGGATAAAAGAC 

jtt1d_338 16 CLEC16A ENSG00000038532 1 11275128 C T CTCATAGCTGGGGCGCTCCCAGACAGGCCAGTCCAGA CAGGACACGCTGGGCCCCTGGCATCCAGAGGAAGAGC 

jtt1d_339 16 CLEC16A ENSG00000038532 1 11275672 G A CCTAAGGGGCAGGTGAAGAAGCGCAGCCCTGCCAGAC GCGCTAGATTCCTCTAAGGTCTCTGAGATGCACCGTT 

jtt1d_340 16 CLEC16A ENSG00000038532 1 11275720 C T CTCTAAGGTCTCTGAGATGCACCGTTTTTTAAAAAGG CGTGGGGTGAACTGATTTTGATCTTCTTGTCTAGATG 

jtt1d_341 16 CLEC16A ENSG00000038532 1 11275881 T G TATGTAAATAATTTTTGTCCCAGTGAGAACCGAGGGT TAGAAAACCTCGATGCCTCTGAGCCTCGGGACCGCTC 

jtt1d_342 16 CLEC16A ENSG00000038532 1 11275913 C T AGGGTTAGAAAACCTCGATGCCTCTGAGCCTCGGGAC CGCTCTAGGGAAGTACCTGCTTTCGCCAGCATGACTC 

jtt1d_343 18 DOK6 ENSG00000206052 1 67508495 C T GCTCTCCTTTCTTCCTCTCTAGGTCATGGGTTTGGTT CGTCAAAGATGTCTCGTGCACAGACATTTCCCAGCTA 

jtt1d_344 18 DOK6 ENSG00000206052 1 67508929 T C GGTCTGACAGTAACAGAAACCTCAGCACTGGGAAAAG TTGCCCACACTGGGGTATGCCTGGGTGATGGGCACCT 

jtt1d_345 18 DOK6 ENSG00000206052 1 67509073 A G CACAAGCTCTGTGGCTTTTAAAGTTCTGACAGGGATA AATACAGTAAGCTCTGCAAATGACATCGTAGCTGCAT 

jtt1d_346 18 DOK6 ENSG00000206052 1 67509199 C T AAGCAGGGCCCTGTAGCTCTACTCGTGTGTGTGTGTG CGTGTGTGTGTGTGTGTGTAGACAAATGGATATTGCT 

jtt1d_347 18 DOK6 ENSG00000206052 1 67509341 T C TTGTTGAAAACCATAATTTGGTGCATTAAAGTTAAGA TTGTTATGTTGAATAGCTATTTTTAAAATAGTGCTGT 

jtt1d_348 18 CD226 ENSG00000150637 -1 67530195 C T GAATGATCACTATATTTAACAATAACCATTGTCCTTT CAAGGTAACCATGACAGTTTTATTCAGTTTGGCAAAT 

jtt1d_349 18 CD226 ENSG00000150637 -1 67530439 G A CCAATTTCTTTTTTCCCTCCCAAATTTCTACCCTACC GTCCTATGCCACCACTTTCAACTGTCACTTTTAGTGG 
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jtt1d_350 18 CD226 ENSG00000150637 -1 67530796 G A GGTATTCTTCTGGACTATGCTGATAGAGTGGATTCTA GAAGTATGGACAGAGATACCCCATTTCTAGAATCCAT 

jtt1d_351 18 CD226 ENSG00000150637 -1 67531026 C A AGTGAACCCTTAGTTTACTTAAGCCATTCCATCCTTT CTGGTCATGTTGCCTATTTAACAATGAAAAAATAATC 

jtt1d_352 18 CD226 ENSG00000150637 -1 67531642 T C TCTCTTGTATCATCCATGGATTGATTGGTAGGTTGAC TGGTAGAGATGGGACTTCTATAGTTATTGGGTGCCTA 

jtt1d_353 18 CD226 ENSG00000150637 -1 67534632 C T TCTGTGTATCCCAGGACTCTGTAAATAGATCTCTTCT CTCTCTCCTTCTCCTTCTGGAATGCATATTCAATAAA 

jtt1d_354 18 CD226 ENSG00000150637 -1 67534642 C T CCAGGACTCTGTAAATAGATCTCTTCTCTCTCTCCTT CTCCTTCTGGAATGCATATTCAATAAAGGATATAAAG 

jtt1d_355 18 CD226 ENSG00000150637 -1 67563156 G T ACCAAGTTGCAGTAAGTTAAGAGGTCGATCTGACGGG GCTGGATCTTTTCCCACCTCACTGCCTGCACAGGCCA 
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Appendix III  
Substitution scores of the 100 nsSNPs 

 
ID BLOSUM PAM ESST 

jtt1d_1 0 1 N/A
jtt1d_5 0 0 1
jtt1d_6 -1 0 1

jtt1d_10 0 0 1
jtt1d_11 0 1 1
jtt1d_13 3 3 4
jtt1d_14 0 0 N/A
jtt1d_15 1 -2 N/A
jtt1d_16 0 0 N/A
jtt1d_17 -1 -1 N/A
jtt1d_19 0 0 N/A
jtt1d_21 0 0 2
jtt1d_22 -3 -3 -5
jtt1d_23 1 3 N/A
jtt1d_25 1 1 2.8571
jtt1d_27 2 2 N/A
jtt1d_28 0 0 N/A
jtt1d_31 -2 -6 N/A
jtt1d_32 0 0 N/A
jtt1d_35 -3 -3 N/A
jtt1d_36 0 1 N/A
jtt1d_43 -3 -5 N/A
jtt1d_51 0 0 N/A
jtt1d_53 0 -1 N/A
jtt1d_54 -1 -1 N/A
jtt1d_55 1 1 N/A
jtt1d_56 -1 0 N/A
jtt1d_57 2 2 N/A
jtt1d_59 -1 0 N/A
jtt1d_60 -2 -2 N/A
jtt1d_62 -3 -5 N/A
jtt1d_64 2 3 N/A
jtt1d_69 -3 0 N/A
jtt1d_70 -1 -1 N/A
jtt1d_71 -1 -1 N/A
jtt1d_74 -3 -3 N/A
jtt1d_78 -3 -5 N/A
jtt1d_79 0 1 N/A
jtt1d_83 0 1 N/A
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jtt1d_89 -2 -2 N/A
jtt1d_105 1 1 N/A
jtt1d_106 -1 -2 N/A
jtt1d_107 -1 -2 N/A
jtt1d_155 -1 0 N/A
jtt1d_156 -2 -5 N/A
jtt1d_158 -1 -1 N/A
jtt1d_161 0 0 N/A
jtt1d_162 1 0 N/A
jtt1d_171 1 0 0
jtt1d_173 1 1 2.25
jtt1d_176 -1 0 N/A
jtt1d_178 -1 -1 N/A
jtt1d_179 -1 -1 N/A
jtt1d_180 2 1 N/A
jtt1d_183 -2 -2 -4
jtt1d_185 2 2 N/A
jtt1d_187 -2 -4 N/A
jtt1d_191 -3 -5 N/A
jtt1d_192 -3 -3 N/A
jtt1d_195 -1 0 -1
jtt1d_197 1 0 N/A
jtt1d_202 1 0 N/A
jtt1d_219 -2 -4 N/A
jtt1d_223 1 2 N/A
jtt1d_225 -3 -5 N/A
jtt1d_239 1 2 N/A
jtt1d_240 -2 -11 N/A
jtt1d_241 -1 0 N/A
jtt1d_242 -1 0 N/A
jtt1d_243 -1 -2 N/A
jtt1d_247 0 0 N/A
jtt1d_256 -1 -1 N/A
jtt1d_260 1 0 N/A
jtt1d_265 1 1 N/A
jtt1d_268 2 1 N/A
jtt1d_275 0 2 0
jtt1d_276 1 1 N/A
jtt1d_277 1 1 N/A
jtt1d_278 3 3 N/A
jtt1d_283 -1 -1 N/A
jtt1d_285 2 3 N/A
jtt1d_286 -1 -1 N/A
jtt1d_287 -1 -2 N/A
jtt1d_288 -2 -6 N/A
jtt1d_289 -2 -2 N/A
jtt1d_290 0 0 N/A
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jtt1d_292 -2 -1 N/A
jtt1d_295 -2 -6 N/A
jtt1d_296 0 -1 N/A
jtt1d_302 1 0 N/A
jtt1d_304 1 0 N/A
jtt1d_321 -3 0 N/A
jtt1d_325 2 -1 N/A
jtt1d_326 1 1 N/A
jtt1d_327 1 0 N/A
jtt1d_328 1 1 N/A
jtt1d_343 -2 -6 N/A
jtt1d_352 0 0 N/A
jtt1d_354 2 2 N/A
jtt1d_355 -1 -2 N/A

 



 

 184

References 
 

1. Bajaj M, Blundell T (1984) Evolution and the tertiary structure of proteins. Annual 

Review of Biophysics and Bioengineering 13: 453. 

2. Orengo CA, Thornton JM (2005) Protein families and their evolution-a structural 

perspective. Annual Review of Biochemistry 74: 867. 

3. Sanger F, Tuppy H (1951) The amino-acid sequence in the phenylalanyl chain of 

insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem J 

49: 481-490. 

4. Sanger F, Tuppy H (1951) The amino-acid sequence in the phenylalanyl chain of 

insulin. I. The identification of lower peptides from partial hydrolysates. 

Biochem J 49: 463-481. 

5. Sanger F (1988) Sequences, Sequences, and Sequences. Annual Review of 

Biochemistry 57: 1-29. 

6. Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, et al. (1969) Structure 

of Rhombohedral 2 Zinc Insulin Crystals. Nature 224: 491-495. 

7. Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, et al. (1971) Atomic 

positions in rhombohedral 2-zinc insulin crystals. Nature 231: 506-511. 

8. Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, et al. (1972) Three-

dimensional atomic structure of insulin and its relationship to activity. Diabetes 

21: 492-505. 

9. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624-626. 

10. Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246: 

96-98. 

11. Zuckerkandl E (1976) Evolutionary processes and evolutionary noise at the 

molecular level. I. Functional density in proteins. J Mol Evol 7: 167-183. 

12. Zuckerkandl E (1976) Evolutionary processes and evolutionary noise at the 

molecular level. II. A selectionist model for random fixations in proteins. J Mol 

Evol 7: 269-311. 

13. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary 

rate in the protein interaction network. Science 296: 750-752. 



 

 185

14. Bloom JD, Adami C (2003) Apparent dependence of protein evolutionary rate on 

number of interactions is linked to biases in protein-protein interactions data sets. 

BMC Evol Biol 3: 21. 

15. Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein 

evolution rate and the number of protein-protein interactions: only the most 

prolific interactors tend to evolve slowly. BMC Evol Biol 3: 1. 

16. Hubbard TJ, Blundell TL (1987) Comparison of solvent-inaccessible cores of 

homologous proteins: definitions useful for protein modelling. Protein Eng 1: 

159-171. 

17. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and 

implications of simple methods for predicting the secondary structure of 

globular proteins. Journal of Molecular Biology 120: 97. 

18. Gibrat JF, Garnier J, Robson B (1987) Further developments of protein secondary 

structure prediction using information theory. New parameters and consideration 

of residue pairs. Journal of Molecular Biology 198: 425. 

19. Levin JM, Robson B, Garnier J (1986) An algorithm for secondary structure 

determination in proteins based on sequence similarity. FEBS Letters 205: 303. 

20. Pauling L, Corey RB (1951) Configurations of Polypeptide Chains With Favored 

Orientations Around Single Bonds: Two New Pleated Sheets. Proc Natl Acad 

Sci U S A 37: 729-740. 

21. Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-

bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S 

A 37: 205-211. 

22. Hutchinson EG, Thornton JM (1994) A revised set of potentials for beta-turn 

formation in proteins. Protein Sci 3: 2207-2216. 

23. Sibanda BL, Blundell TL, Thornton JM (1989) Conformation of beta-hairpins in 

protein structures. A systematic classification with applications to modelling by 

homology, electron density fitting and protein engineering. J Mol Biol 206: 759-

777. 

24. Wilmot CM, Thornton JM (1988) Analysis and prediction of the different types of 

beta-turn in proteins. J Mol Biol 203: 221-232. 



 

 186

25. Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog 

Biophys Mol Biol 44: 97-179. 

26. Presta LG, Rose GD (1988) Helix signals in proteins. Science 240: 1632-1641. 

27. Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations 

at the ends of alpha helices. Science 240: 1648-1652. 

28. Jansen GA, Ferdinandusse S, Hogenhout EM, Verhoeven NM, Jakobs C, et al. 

(1999) Phytanoyl-CoA hydroxylase deficiency. Enzymological and molecular 

basis of classical Refsum disease. Adv Exp Med Biol 466: 371-376. 

29. Chan AWE, Hutchinson EG, Thornton JM (1993) Identification, classification, and 

analysis of beta-bulges in proteins. Protein Sci 2: 1574-1590. 

30. Richardson JS, Getzoff ED, Richardson DC (1978) The beta bulge: a common small 

unit of nonrepetitive protein structure. Proc Natl Acad Sci U S A 75: 2574-2578. 

31. Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201: 601-

619. 

32. Eswar N, Ramakrishnan C (1999) Secondary structures without backbone: an 

analysis of backbone mimicry by polar side chains in protein structures. Protein 

Eng 12: 447-455. 

33. Cubellis MV, Caillez F, Blundell TL, Lovell SC (2005) Properties of polyproline II, 

a secondary structure element implicated in protein-protein interactions. Proteins 

58: 880-892. 

34. Stapley BJ, Creamer TP (1999) A survey of left-handed polyproline II helices. 

Protein Sci 8: 587-595. 

35. Milner-White E, Ross BM, Ismail R, Belhadj-Mostefa K, Poet R (1988) One type of 

gamma-turn, rather than the other gives rise to chain-reversal in proteins. J Mol 

Biol 204: 777-782. 

36. Milner-White EJ (1987) Beta-bulges within loops as recurring features of protein 

structure. Biochim Biophys Acta 911: 261-265. 

37. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural 

classification of proteins database for the investigation of sequences and 

structures. J Mol Biol 247: 536-540. 

38. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, et al. (1997) CATH--a 

hierarchic classification of protein domain structures. Structure 5: 1093-1108. 



 

 187

39. Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) HOMSTRAD: a 

database of protein structure alignments for homologous families. Protein Sci 7: 

2469-2471. 

40. Bhaduri A, Pugalenthi G, Sowdhamini R (2004) PASS2: an automated database of 

protein alignments organised as structural superfamilies. BMC Bioinformatics 5: 

35. 

41. Bickerton GR (2009) Molecular Characterization and Evolutionary Plasticity of 

Protein-Protein Interfaces. Cambridge: Emmanuel College, University of 

Cambridge. 264 p. 

42. Holm L, Sander C (1996) The FSSP database: fold classification based on structure-

structure alignment of proteins. Nucleic Acids Research 24: 206. 

43. Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental 

combinatorial extension (CE) of the optimal path. Protein Engineering 11: 739. 

44. Marchler-Bauer A, Addess KJ, Chappey C, Geer L, Madej T, et al. (1999) MMDB: 

Entrez's 3D structure database. Nucleic Acids Res 27: 240-243. 

45. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein 

families database. Nucl Acids Res 36: D281-288. 

46. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2009) InterPro: 

the integrative protein signature database. Nucl Acids Res 37: D211-215. 

47. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, et al. (2006) The PROSITE 

database. Nucleic Acids Res 34: D227-230. 

48. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, et al. (2003) PRINTS 

and its automatic supplement, prePRINTS. Nucleic Acids Research 31: 400. 

49. Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, et al. (2002) ProDom: automated 

clustering of homologous domains. Briefings in Bioinformatics 3: 246. 

50. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular 

architecture research tool: Identification of signaling domains. Proceedings of 

the National Academy of Sciences of the United States of America 95: 5857. 

51. Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein 

families. Nucleic Acids Research 31: 371. 



 

 188

52. Buchan DW, Rison SC, Bray JE, Lee D, Pearl F, et al. (2003) Gene3D: structural 

assignments for the biologist and bioinformaticist alike. Nucleic Acids Res 31: 

469-473. 

53. Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, et al. (2009) SUPERFAMILY--

sophisticated comparative genomics, data mining, visualization and phylogeny. 

Nucleic Acids Research 37: D380-386. 

54. Krishnamurthy N, Brown D, Kirshner D, Sjolander K (2006) PhyloFacts: an online 

structural phylogenomic encyclopedia for protein functional and structural 

classification. Genome Biology 7: R83. 

55. Wang Y, Addess KJ, Chen J, Geer LY, He J, et al. (2007) MMDB: annotating 

protein sequences with Entrez's 3D-structure database. Nucleic Acids Res 35: 

D298-300. 

56. Heger A, Korpelainen E, Hupponen T, Mattila K, Ollikainen V, et al. (2008) 

PairsDB atlas of protein sequence space. Nucl Acids Res 36: D276-280. 

57. Orengo CA, Stilltoe I, Reeves G, Pearl FMG (2001) What can structural 

classifications reveal about protein evolution? J Struc Biol 134: 145-165. 

58. Orengo CA, Taylor WR (1993) A local alignment method for protein structure 

motifs. Journal of Molecular Biology 233: 488. 

59. Sali A, Blundell TL (1990) Definition of general topological equivalence in protein 

structures. A procedure involving comparison of properties and relationships 

through simulated annealing and dynamic programming. J Mol Biol 212: 403-

428. 

60. Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: 

protein sequence-structure representation and analysis. Bioinformatics 14: 617-

623. 

61. Madej T, Gibrat JF, Bryant SH (1995) Threading a database of protein cores. 

Proteins 23: 356. 

62. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, et al. (2008) The complete 

genome of an individual by massively parallel DNA sequencing. Nature 452: 

872-876. 

63. Eddy SR, Mitchison G, Durbin R (1995) Maximum discrimination hidden Markov 

models of sequence consensus. J Comput Biol 2: 9-23. 



 

 189

64. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped 

BLAST and PSI-BLAST: a new generation of protein database search programs. 

Nucleic Acids Res 25: 3389-3402. 

65. (2008) The universal protein resource (UniProt). Nucleic Acids Res 36: D190-195. 

66. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to 

genome sequences using a library of hidden Markov models that represent all 

proteins of known structure. J Mol Biol 313: 903-919. 

67. Krishnamurthy N, Brown D, Sjolander K (2007) FlowerPower: clustering proteins 

into domain architecture classes for phylogenomic inference of protein function. 

BMC Evol Biol 7 Suppl 1: S12. 

68. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the 

fly. Nucleic Acids Research 32: W327-331. 

69. Blundell TL, Wood SP (1975) Is the evolution of insulin Darwinian or due to 

selectively neutral mutation? Nature 257: 197. 

70. Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 

11: 660-666. 

71. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly 

expressed proteins evolve slowly. Proc Natl Acad Sci USA 102: 14338-14343. 

72. Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate 

of yeast protein evolution. Mol Biol Evol 23: 327-337. 

73. Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a 

dominant constraint on coding-sequence evolution. Cell 134: 341-352. 

74. Hamill SJ, Cota E, Chothia C, Clarke J (2000) Conservation of folding and stability 

within a protein family: the tyrosine corner as an evolutionary cul-de-sac. J Mol 

Biol 295: 641-649. 

75. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human 

disease. Annu Rev Biochem 75: 333-366. 

76. Hamada D, Tanaka T, Tartaglia GG, Pawar A, Vendruscolo M, et al. (2009) 

Competition between folding, native-state dimerisation and amyloid aggregation 

in beta-lactoglobulin. J Mol Biol 386: 878-890. 

77. Goldberg AL (2003) Protein degradation and protection against misfolded or 

damaged proteins. Nature 426: 895-899. 



 

 190

78. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 

286: 481-486. 

79. Pal C, Papp B, Lercher MJ (2006) An integrated view of protein evolution. Nat Rev 

Genet 7: 337-348. 

80. Dayhoff MO, Eck RV (1968) Atlas of Protein Sequence and Structure. Natl Biomed 

Res Found 3: 33. 

81. Grantham R (1974) Amino acid difference formula to help explain protein evolution. 

Science 185: 862-864. 

82. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein 

blocks. Proc Natl Acad Sci U S A 89: 10915-10919. 

83. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data 

matrices from protein sequences. Comput Appl Biosci 8: 275-282. 

84. Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire 

protein sequence database. Science 256: 1443-1445. 

85. Whelan S, Goldman N (2001) A general empirical model of protein evolution 

derived from multiple protein families using a maximum-likelihood approach. 

Mol Biol Evol 18: 691-699. 

86. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol 

Biol Evol 25: 1307-1320. 

87. Luthy R, McLachlan AD, Eisenberg D (1991) Secondary structure-based profiles: 

use of structure-conserving scoring tables in searching protein sequence 

databases for structural similarities. Proteins 10: 229-239. 

88. Overington J, Donnelly D, Johnson MS, Sali A, Blundell TL (1992) Environment-

specific amino acid substitution tables: tertiary templates and prediction of 

protein folds. Protein Sci 1: 216-226. 

89. Overington J, Johnson MS, Sali A, Blundell TL (1990) Tertiary structural 

constraints on protein evolutionary diversity: templates, key residues and 

structure prediction. Proc Biol Sci 241: 132-145. 

90. Koshi JM, Goldstein RA (1995) Context-dependent optimal substitution matrices. 

Protein Eng 8: 641-645. 

91. Koehl P, Levitt M (2002) Protein topology and stability define the space of allowed 

sequences. Proc Natl Acad Sci USA 99: 1280-1285. 



 

 191

92. Rice DW, Eisenberg D (1997) A 3D-1D substitution matrix for protein fold 

recognition that includes predicted secondary structure of the sequence. J Mol 

Biol 267: 1026-1038. 

93. Lee S, Blundell TL (2009) Ulla: a program for calculating environment-specific 

amino acid substitution tables. Bioinformatics 25: 1976-1977. 

94. DeLano WL (2002) The PyMOL Molecular Graphics System. Palo Alto, CA, USA: 

DeLano Scientific. 

95. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of 

polypeptide chain configurations. J Mol Biol 7: 95-99. 

96. Lovell SC, Davis IW, Arendall WB, 3rd, de Bakker PI, Word JM, et al. (2003) 

Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 

50: 437-450. 

97. Worth CL, Blundell TL (2009) Satisfaction of hydrogen-bonding potential 

influences the conservation of polar sidechains. Proteins 75: 413-429. 

98. Wako H, Blundell TL (1994) Use of amino acid environment-dependent substitution 

tables and conformational propensities in structure prediction from aligned 

sequences of homologous proteins. II. Secondary structures. J Mol Biol 238: 

693-708. 

99. Johnson MS, Overington JP, Blundell TL (1993) Alignment and searching for 

common protein folds using a data bank of structural templates. J Mol Biol 231: 

735-752. 

100. Chelliah V, Chen L, Blundell TL, Lovell SC (2004) Distinguishing structural and 

functional restraints in evolution in order to identify interaction sites. J Mol Biol 

342: 1487-1504. 

101. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, et al. (1999) Characterization 

of single-nucleotide polymorphisms in coding regions of human genes. Nat 

Genet 22: 231-238. 

102. Sunyaev S, Hanke J, Aydin A, Wirkner U, Zastrow I, et al. (1999) Prediction of 

nonsynonymous single nucleotide polymorphisms in human disease-associated 

genes. J Mol Med 77: 754-760. 



 

 192

103. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic 

linkage map in man using restriction fragment length polymorphisms. Am J 

Hum Genet 32: 314-331. 

104. Solomon E, Bodmer WF (1979) Evolution of sickle variant gene. Lancet 1: 923. 

105. Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent to human 

beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci 

U S A 75: 5631-5635. 

106. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, et al. (1996) A novel 

MHC class I-like gene is mutated in patients with hereditary haemochromatosis. 

Nat Genet 13: 399-408. 

107. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, et al. (2002) 

Identification of a variant associated with adult-type hypolactasia. Nat Genet 30: 

233-237. 

108. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: 

past successes for mendelian disease, future approaches for complex disease. 

Nat Genet 33 Suppl: 228-237. 

109. Kruglyak L (2008) The road to genome-wide association studies. Nat Rev Genet 9: 

314-318. 

110. Sunyaev S, Ramensky V, Bork P (2000) Towards a structural basis of human non-

synonymous single nucleotide polymorphisms. Trends Genet 16: 198-200. 

111. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17: 263-

270. 

112. Yue P, Li Z, Moult J (2005) Loss of protein structure stability as a major causative 

factor in monogenic disease. J Mol Biol 353: 459-473. 

113. Ferrer-Costa C, Orozco M, de la Cruz X (2002) Characterization of disease-

associated single amino acid polymorphisms in terms of sequence and structure 

properties. Journal of Molecular Biology 315: 771-786. 

114. Steward RE, MacArthur MW, Laskowski RA, Thornton JM (2003) Molecular 

basis of inherited diseases: a structural perspective. Trends Genet 19: 505-513. 

115. Worth CL, Bickerton GR, Schreyer A, Forman JR, Cheng TM, et al. (2007) A 

structural bioinformatics approach to the analysis of nonsynonymous single 



 

 193

nucleotide polymorphisms (nsSNPs) and their relation to disease. J Bioinform 

Comput Biol 5: 1297-1318. 

116. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome 

Res 11: 863-874. 

117. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, et al. (1983) A 

polymorphic DNA marker genetically linked to Huntington's disease. Nature 

306: 234-238. 

118. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, et al. (1989) 

Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073-

1080. 

119. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, et al. (1989) 

Identification of the cystic fibrosis gene: cloning and characterization of 

complementary DNA. Science 245: 1066-1073. 

120. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, et al. (2010) 

Signatures of mutation and selection in the cancer genome. Nature 463: 893-898. 

121. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution 

at synonymous sites in mammals. Nature Rev Genet 7: 98-108. 

122. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, et al. 

(2010) A comprehensive catalogue of somatic mutations from a human cancer 

genome. Nature 463: 191-196. 

123. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev 

Genomics Hum Genet 9: 387-402. 

124. (2007) Genome-wide association study of 14,000 cases of seven common diseases 

and 3,000 shared controls. Nature 447: 661-678. 

125. Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and 

its contribution to complex traits. Nat Rev Genet 10: 241-251. 

126. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, et al. (2008) 

Genome-wide association studies for complex traits: consensus, uncertainty and 

challenges. Nat Rev Genet 9: 356-369. 

127. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, et al. (2003) Human Gene 

Mutation Database (HGMD): 2003 update. Hum Mutat 21: 577-581. 



 

 194

128. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, et al. (2001) dbSNP: the 

NCBI database of genetic variation. Nucleic Acids Res 29: 308-311. 

129. Brookes AJ, Lehvaslaiho H, Siegfried M, Boehm JG, Yuan YP, et al. (2000) 

HGBASE: a database of SNPs and other variations in and around human genes. 

Nucleic Acids Res 28: 356-360. 

130. Fredman D, Siegfried M, Yuan YP, Bork P, Lehvaslaiho H, et al. (2002) 

HGVbase: a human sequence variation database emphasizing data quality and a 

broad spectrum of data sources. Nucleic Acids Res 30: 387-391. 

131. Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, et al. (1999) ProTherm: 

Thermodynamic Database for Proteins and Mutants. Nucleic Acids Res 27: 286-

288. 

132. Thorn KS, Bogan AA (2001) ASEdb: a database of alanine mutations and their 

effects on the free energy of binding in protein interactions. Bioinformatics 17: 

284-285. 

133. Martin AC, Facchiano AM, Cuff AL, Hernandez-Boussard T, Olivier M, et al. 

(2002) Integrating mutation data and structural analysis of the TP53 tumor-

suppressor protein. Hum Mutat 19: 149-164. 

134. Kwok CJ, Martin AC, Au SW, Lam VM (2002) G6PDdb, an integrated database of 

glucose-6-phosphate dehydrogenase (G6PD) mutations. Hum Mutat 19: 217-224. 

135. Mooney SD, Altman RB (2003) MutDB: annotating human variation with 

functionally relevant data. Bioinformatics 19: 1858-1860. 

136. Riva A, Kohane IS (2002) SNPper: retrieval and analysis of human SNPs. 

Bioinformatics 18: 1681-1685. 

137. Yip YL, Scheib H, Diemand AV, Gattiker A, Famiglietti LM, et al. (2004) The 

Swiss-Prot variant page and the ModSNP database: a resource for sequence and 

structure information on human protein variants. Hum Mutat 23: 464-470. 

138. Mottaz A, David FP, Veuthey AL, Yip YL (2010) Easy retrieval of single amino-

acid polymorphisms and phenotype information using SwissVar. Bioinformatics 

26: 851-852. 

139. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, et al. (2004) The COSMIC 

(Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 

91: 355-358. 



 

 195

140. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, et al. (2008) The Catalogue 

of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet Chapter 

10: Unit 10 11. 

141. Stitziel NO, Binkowski TA, Tseng YY, Kasif S, Liang J (2004) topoSNP: a 

topographic database of non-synonymous single nucleotide polymorphisms with 

and without known disease association. Nucleic Acids Res 32: D520-522. 

142. Ryan M, Diekhans M, Lien S, Liu Y, Karchin R (2009) LS-SNP/PDB: annotated 

non-synonymous SNPs mapped to Protein Data Bank structures. Bioinformatics 

25: 1431-1432. 

143. Karchin R, Diekhans M, Kelly L, Thomas DJ, Pieper U, et al. (2005) LS-SNP: 

large-scale annotation of coding non-synonymous SNPs based on multiple 

information sources. Bioinformatics 21: 2814-2820. 

144. Hurst JM, McMillan LE, Porter CT, Allen J, Fakorede A, et al. (2009) The 

SAAPdb web resource: a large-scale structural analysis of mutant proteins. Hum 

Mutat 30: 616-624. 

145. Reumers J, Conde L, Medina I, Maurer-Stroh S, Van Durme J, et al. (2008) Joint 

annotation of coding and non-coding single nucleotide polymorphisms and 

mutations in the SNPeffect and PupaSuite databases. Nucleic Acids Res 36: 

D825-829. 

146. Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F (2006) SNPeffect v2.0: a 

new step in investigating the molecular phenotypic effects of human non-

synonymous SNPs. Bioinformatics 22: 2183-2185. 

147. Reumers J, Schymkowitz J, Ferkinghoff-Borg J, Stricher F, Serrano L, et al. (2005) 

SNPeffect: a database mapping molecular phenotypic effects of human non-

synonymous coding SNPs. Nucleic Acids Res 33: D527-532. 

148. Han A, Kang HJ, Cho Y, Lee S, Kim YJ, et al. (2006) SNP@Domain: a web 

resource of single nucleotide polymorphisms (SNPs) within protein domain 

structures and sequences. Nucleic Acids Res 34: W642-644. 

149. Hulbert EM, Smink LJ, Adlem EC, Allen JE, Burdick DB, et al. (2007) T1DBase: 

integration and presentation of complex data for type 1 diabetes research. 

Nucleic Acids Res 35: D742-746. 



 

 196

150. Jegga AG, Gowrisankar S, Chen J, Aronow BJ (2007) PolyDoms: a whole genome 

database for the identification of non-synonymous coding SNPs with the 

potential to impact disease. Nucleic Acids Res 35: D700-706. 

151. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second 

generation human haplotype map of over 3.1 million SNPs. Nature 449: 851-861. 

152. Church DM, Lappalainen I, Sneddon TP, Hinton J, Maguire M, et al. (2010) Public 

data archives for genomic structural variation. Nat Genet 42: 813-814. 

153. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, et al. (2010) A 

map of human genome variation from population-scale sequencing. Nature 467: 

1061-1073. 

154. Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, et al. (2010) Genome-

wide association study of CNVs in 16,000 cases of eight common diseases and 

3,000 shared controls. Nature 464: 713-720. 

155. Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, et al. (2003) Mutational 

analysis of the tyrosine kinome in colorectal cancers. Science 300: 949. 

156. Davies H, Hunter C, Smith R, Stephens P, Greenman C, et al. (2005) Somatic 

mutations of the protein kinase gene family in human lung cancer. Cancer Res 

65: 7591-7595. 

157. Awan A, Bari H, Yan F, Moksong S, Yang S, et al. (2007) Regulatory network 

motifs and hotspots of cancer genes in a mammalian cellular signalling network. 

IET Syst Biol 1: 292-297. 

158. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, et al. (2007) Patterns 

of somatic mutation in human cancer genomes. Nature 446: 153-158. 

159. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. (2007) The genomic 

landscapes of human breast and colorectal cancers. Science 318: 1108-1113. 

160. Burke DF, Worth CL, Priego EM, Cheng T, Smink LJ, et al. (2007) Genome 

bioinformatic analysis of nonsynonymous SNPs. BMC Bioinformatics 8: 301. 

161. Gilis D, Rooman M (2000) PoPMuSiC, an algorithm for predicting protein mutant 

stability changes: application to prion proteins. Protein Eng 13: 849-856. 

162. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves 

structure-derived potentials of mean force for structure selection and stability 

prediction. Protein Sci 11: 2714-2726. 



 

 197

163. Brooks BR, Brooks CL, 3rd, Mackerell AD, Jr., Nilsson L, Petrella RJ, et al. 

(2009) CHARMM: the biomolecular simulation program. J Comput Chem 30: 

1545-1614. 

164. Christen M, Hunenberger PH, Bakowies D, Baron R, Burgi R, et al. (2005) The 

GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 

26: 1719-1751. 

165. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of 

proteins and protein complexes: a study of more than 1000 mutations. J Mol 

Biol 320: 369-387. 

166. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, et al. (2005) The FoldX 

web server: an online force field. Nucleic Acids Res 33: W382-388. 

167. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for 

single-site mutations using support vector machines. Proteins 62: 1125-1132. 

168. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes 

upon mutation from the protein sequence or structure. Nucleic Acids Res 33: 

W306-310. 

169. Capriotti E, Fariselli P, Casadio R (2004) A neural-network-based method for 

predicting protein stability changes upon single point mutations. Bioinformatics 

20 Suppl 1: i63-68. 

170. Masso M, Vaisman, II (2008) Accurate prediction of stability changes in protein 

mutants by combining machine learning with structure based computational 

mutagenesis. Bioinformatics 24: 2002-2009. 

171. Dell'Orco D (2009) Fast predictions of thermodynamics and kinetics of protein-

protein recognition from structures: from molecular design to systems biology. 

Mol Biosyst 5: 323-334. 

172. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) 

GenMAPP, a new tool for viewing and analyzing microarray data on biological 

pathways. Nat Genet 31: 19-20. 

173. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server 

and survey. Nucleic Acids Res 30: 3894-3900. 



 

 198

174. Topham CM, Srinivasan N, Blundell TL (1997) Prediction of the stability of 

protein mutants based on structural environment-dependent amino acid 

substitution and propensity tables. Protein Eng 10: 7-21. 

175. Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, et al. (2009) Fast and 

accurate predictions of protein stability changes upon mutations using statistical 

potentials and neural networks: PoPMuSiC-2.0. Bioinformatics. 

176. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein 

function. Nucleic Acids Res 31: 3812-3814. 

177. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A 

method and server for predicting damaging missense mutations. Nat Methods 7: 

248-249. 

178. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, et al. (2003) PANTHER: 

a library of protein families and subfamilies indexed by function. Genome Res 

13: 2129-2141. 

179. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human 

genetic diseases associated to single point protein mutations with support vector 

machines and evolutionary information. Bioinformatics 22: 2729-2734. 

180. Bao L, Zhou M, Cui Y (2005) nsSNPAnalyzer: identifying disease-associated 

nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 33: 

W480-482. 

181. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, et al. (2005) 

PMUT: a web-based tool for the annotation of pathological mutations on 

proteins. Bioinformatics 21: 3176-3178. 

182. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein 

stability upon point mutations. Nucleic Acids Res 34: W239-242. 

183. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, et al. (2006) FASTSNP: an 

always up-to-date and extendable service for SNP function analysis and 

prioritization. Nucleic Acids Res 34: W635-641. 

184. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for 

association studies. BMC Bioinformatics 7: 166. 

185. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator of protein 

stability. Nat Methods 4: 466-467. 



 

 199

186. Ye ZQ, Zhao SQ, Gao G, Liu XQ, Langlois RE, et al. (2007) Finding new 

structural and sequence attributes to predict possible disease association of 

single amino acid polymorphism (SAP). Bioinformatics 23: 1444-1450. 

187. Uzun A, Leslin CM, Abyzov A, Ilyin V (2007) Structure SNP (StSNP): a web 

server for mapping and modeling nsSNPs on protein structures with linkage to 

metabolic pathways. Nucleic Acids Res 35: W384-392. 

188. Li S, Ma L, Li H, Vang S, Hu Y, et al. (2007) Snap: an integrated SNP annotation 

platform. Nucleic Acids Res 35: D707-710. 

189. Masso M, Vaisman, II (2010) AUTO-MUTE: web-based tools for predicting 

stability changes in proteins due to single amino acid replacements. Protein Eng 

Des Sel 23: 683-687. 

190. Cheng TM, Lu YE, Vendruscolo M, Lio P, Blundell TL (2008) Prediction by 

graph theoretic measures of structural effects in proteins arising from non-

synonymous single nucleotide polymorphisms. PLoS Comput Biol 4: e1000135. 

191. Capriotti E, Arbiza L, Casadio R, Dopazo J, Dopazo H, et al. (2008) Use of 

estimated evolutionary strength at the codon level improves the prediction of 

disease-related protein mutations in humans. Hum Mutat 29: 198-204. 

192. Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for 

disease association studies. Nucleic Acids Res 36: D820-824. 

193. Gong S, Blundell TL (2008) Discarding functional residues from the substitution 

table improves predictions of active sites within three-dimensional structures. 

PLoS Comput Biol 4: e1000179. 

194. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. 

J Theor Biol 8: 357-366. 

195. Zuckerkandl E, Pauling LB (1962) Molecular disease, evolution, and genetic 

heterogeneity; Kasha M, Pullman B, editors: Academic Press. 189-225 p. 

196. Blundell TL, Cooper J, Donnelly D, Driessen H, Edwards Y, et al. (1991) Patterns 

of sequence variation in families of homologous proteins. In: 

Jornvall/Hoog/Gustavsson, editor. Methods in Proteins Sequence Analysis. 

Basel: Birkhauser Verlag AG. pp. 373-385. 



 

 200

197. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology 

recognition using environment-specific substitution tables and structure-

dependent gap penalties. J Mol Biol 310: 243-257. 

198. Chelliah V, Blundell T, Mizuguchi K (2005) Functional restraints on the patterns 

of amino acid substitutions: application to sequence-structure homology 

recognition. Proteins 61: 722-731. 

199. Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of 

catalytic sites and residues identified in enzymes using structural data. Nucleic 

Acids Res 32: D129-133. 

200. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, et al. (2004) UniProt: 

the Universal Protein knowledgebase. Nucleic Acids Res 32: D115-119. 

201. Gong S, Park C, Choi H, Ko J, Jang I, et al. (2005) A protein domain interaction 

interface database: InterPare. BMC Bioinformatics 6: 207. 

202. Lee S, Blundell TL (2009) BIPA: a database for protein-nucleic acid interaction in 

3D structures. Bioinformatics 25: 1559-1560. 

203. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in 

proteins. J Mol Biol 238: 777-793. 

204. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol 

Biol 280: 1-9. 

205. Guharoy M, Chakrabarti P (2005) Conservation and relative importance of 

residues across protein-protein interfaces. Proc Natl Acad Sci U S A 102: 

15447-15452. 

206. Fox BA, Yee VC, Pedersen LC, Le Trong I, Bishop PD, et al. (1999) Identification 

of the calcium binding site and a novel ytterbium site in blood coagulation factor 

XIII by x-ray crystallography. J Biol Chem 274: 4917-4923. 

207. Lin Y, Hwang WC, Basavappa R (2002) Structural and functional analysis of the 

human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J Biol Chem 

277: 21913-21921. 

208. Hoang C, Ferre-D'Amare AR (2001) Cocrystal structure of a tRNA Psi55 

pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 

107: 929-939. 



 

 201

209. Stec B, Holtz KM, Kantrowitz ER (2000) A revised mechanism for the alkaline 

phosphatase reaction involving three metal ions. J Mol Biol 299: 1303-1311. 

210. Koike A, Takagi T (2004) Prediction of protein-protein interaction sites using 

support vector machines. Protein Eng Des Sel 17: 165-173. 

211. Sikic M, Tomic S, Vlahovicek K (2009) Prediction of protein-protein interaction 

sites in sequences and 3D structures by random forests. PLoS Comput Biol 5: 

e1000278. 

212. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines 

binding surfaces common to protein families. J Mol Biol 257: 342-358. 

213. Sali A, Overington JP, Johnson MS, Blundell TL (1990) From comparisons of 

protein sequences and structures to protein modelling and design. Trends 

Biochem Sci 15: 235-240. 

214. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein 

Data Bank. Nucleic Acids Res 28: 235-242. 

215. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large 

sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. 

216. (2009) The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 37: 

D169-174. 

217. David FP, Yip YL (2008) SSMap: a new UniProt-PDB mapping resource for the 

curation of structural-related information in the UniProt/Swiss-Prot 

Knowledgebase. BMC Bioinformatics 9: 391. 

218. Laskowski RA (2009) PDBsum new things. Nucleic Acids Res 37: D355-359. 

219. Martin AC (2005) Mapping PDB chains to UniProtKB entries. Bioinformatics 21: 

4297-4301. 

220. Reichert J, Suhnel J (2002) The IMB Jena Image Library of Biological 

Macromolecules: 2002 update. Nucleic Acids Res 30: 253-254. 

221. Velankar S, McNeil P, Mittard-Runte V, Suarez A, Barrell D, et al. (2005) E-

MSD: an integrated data resource for bioinformatics. Nucleic Acids Res 33: 

D262-265. 

222. Via A, Zanzoni A, Helmer-Citterich M (2005) Seq2Struct: a resource for 

establishing sequence-structure links. Bioinformatics 21: 551-553. 



 

 202

223. Slater GS, Birney E (2005) Automated generation of heuristics for biological 

sequence comparison. BMC Bioinformatics 6: 31. 

224. Word MJ (2000) All-atom small-probe contact surface analysis: An information-

rich description of molecular goodness-of-fit. Durham: Duke University. 

225. Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the 

evolution of protein families. Nat Rev Mol Cell Biol 10: 709-720. 

226. Gong S, Worth CL, Bickerton GR, Lee S, Tanramluk D, et al. (2009) Structural 

and functional restraints in the evolution of protein families and superfamilies. 

Biochem Soc Trans 37: 727-733. 

227. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and 

structure in proteins. Embo J 5: 823-826. 

228. Kisters-Woike B, Vangierdegom C, Mueller-Hill B (2000) On the conservation of 

protein sequences in evolution. Trends in Biochemical Sciences 25: 419-421. 

229. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a 

molecular clock of mitochondrial DNA. J Mol Evol 22: 160-174. 

230. Hotelling H (1933) Analysis of Complex Statistical Variables into Principal 

Components. J Educ Psychol 24: 417-441. 

231. Michener CD, Sokal RR (1957) A Quantitative Approach to a Problem in 

Classification. Evolution 11: 130. 

232. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes 

evolvability. Proc Natl Acad Sci U S A 103: 5869-5874. 

233. Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, et al. (2005) 

Thermodynamic prediction of protein neutrality. Proc Natl Acad Sci U S A 102: 

606-611. 

234. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for 

phylogenetic tree display and annotation. Bioinformatics 23: 127-128. 

235. Deane CM, Allen FH, Taylor R, Blundell TL (1999) Carbonyl-carbonyl 

interactions stabilize the partially allowed Ramachandran conformations of 

asparagine and aspartic acid. Protein Eng 12: 1025-1028. 

236. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. 

Proc Natl Acad Sci U S A 96: 9459-9464. 



 

 203

237. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). 

Cladistics 5: 164-166. 

238. Gong S, Blundell TL (2010) Structural and functional restraints on the occurrence 

of single amino Acid variations in human proteins. PLoS One 5: e9186. 

239. Ahn SM, Kim TH, Lee S, Kim D, Ghang H, et al. (2009) The first Korean genome 

sequence and analysis: Full genome sequencing for a socio-ethnic group. 

Genome Res 19: 1622-1629. 

240. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome 

sequence of an individual human. PLoS Biol 5: e254. 

241. Wang J, Wang W, Li R, Li Y, Tian G, et al. (2008) The diploid genome sequence 

of an Asian individual. Nature 456: 60-65. 

242. Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, et al. (2008) Genetic 

variation in an individual human exome. PLoS Genet 4: e1000160. 

243. Bao L, Cui Y (2006) Functional impacts of non-synonymous single nucleotide 

polymorphisms: selective constraint and structural environments. FEBS Lett 

580: 1231-1234. 

244. Yip YL, Famiglietti M, Gos A, Duek PD, David FP, et al. (2008) Annotating 

single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. 

Hum Mutat 29: 361-366. 

245. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, et al. (2009) Ensembl 2009. 

Nucleic Acids Res 37: D690-697. 

246. Talavera D, Taylor MS, Thornton JM (2009) The (non)malignancy of cancerous 

amino acidic substitutions. Proteins. 

247. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, et al. (2009) 

EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees 

in vertebrates. Genome Res 19: 327-335. 

248. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced 

time and space complexity. BMC Bioinformatics 5: 113. 

249. Jansen GA, Hogenhout EM, Ferdinandusse S, Waterham HR, Ofman R, et al. 

(2000) Human phytanoyl-CoA hydroxylase: resolution of the gene structure and 

the molecular basis of Refsum's disease. Hum Mol Genet 9: 1195-1200. 



 

 204

250. Jansen GA, Ofman R, Ferdinandusse S, Ijlst L, Muijsers AO, et al. (1997) Refsum 

disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat 

Genet 17: 190-193. 

251. Mihalik SJ, Morrell JC, Kim D, Sacksteder KA, Watkins PA, et al. (1997) 

Identification of PAHX, a Refsum disease gene. Nat Genet 17: 185-189. 

252. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview 

Version 2--a multiple sequence alignment editor and analysis workbench. 

Bioinformatics 25: 1189-1191. 

253. Valdar WS (2002) Scoring residue conservation. Proteins 48: 227-241. 

254. Prlic A, Down TA, Hubbard TJ (2005) Adding some SPICE to DAS. 

Bioinformatics 21 Suppl 2: ii40-41. 

255. Prlic A, Down TA, Kulesha E, Finn RD, Kahari A, et al. (2007) Integrating 

sequence and structural biology with DAS. BMC Bioinformatics 8: 333. 

256. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern 

recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 

2577-2637. 

257. Ihaka R, Gentleman R (1996) R: A Language for Data Analysis and Graphics. 

Journal of Computational and Graphical Statistics 5: 299-314. 

258. Shenkin PS, Erman B, Mastrandrea LD (1991) Information-theoretical entropy as a 

measure of sequence variability. Proteins 11: 297-313. 

259. Schuler LD, Walde P, Luisi PL, van Gunsteren WF (2001) Molecular dynamics 

simulation of n-dodecyl phosphate aggregate structures. Eur Biophys J 30: 330-

343. 

260. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing 

technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10: 

135-151. 

261. Weir BS (2008) Linkage disequilibrium and association mapping. Annu Rev 

Genomics Hum Genet 9: 129-142. 

262. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, et al. (2007) A 

genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. 

Nature 448: 591-594. 



 

 205

263. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, et al. (2007) Robust 

associations of four new chromosome regions from genome-wide analyses of 

type 1 diabetes. Nat Genet 39: 857-864. 

264. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. (2007) A genome-wide 

association study identifies novel risk loci for type 2 diabetes. Nature 445: 881-

885. 

265. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007) 

Replication of genome-wide association signals in UK samples reveals risk loci 

for type 2 diabetes. Science 316: 1336-1341. 

266. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, et al. (2007) 

Association scan of 14,500 nonsynonymous SNPs in four diseases identifies 

autoimmunity variants. Nat Genet 39: 1329-1337. 

267. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, et al. (2010) Systematic 

sequencing of renal carcinoma reveals inactivation of histone modifying genes. 

Nature 463: 360-363. 

268. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, et al. (2007) Large-scale 

genetic fine mapping and genotype-phenotype associations implicate 

polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 39: 1074-1082. 

269. Reed P, Cucca F, Jenkins S, Merriman M, Wilson A, et al. (1997) Evidence for a 

type 1 diabetes susceptibility locus (IDDM10) on human chromosome 10p11-

q11. Hum Mol Genet 6: 1011-1016. 

270. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, et al. (2002) The generic 

genome browser: a building block for a model organism system database. 

Genome Res 12: 1599-1610. 

271. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, et al. (2004) The 

status, quality, and expansion of the NIH full-length cDNA project: the 

Mammalian Gene Collection (MGC). Genome Res 14: 2121-2127. 

272. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, et al. (2004) Complete 

sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 

36: 40-45. 



 

 206

273. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, et al. (2006) A genome-wide 

association study of nonsynonymous SNPs identifies a type 1 diabetes locus in 

the interferon-induced helicase (IFIH1) region. Nat Genet 38: 617-619. 

274. Jmol: an open-source Java viewer for chemical structures in 3D. 

http://www.jmol.org/  

275. Chistyakov DA, Savost'anov KV, Turakulov RI, Petunina NA, Trukhina LV, et al. 

(2000) Complex association analysis of graves disease using a set of 

polymorphic markers. Mol Genet Metab 70: 214-218. 

276. Marron MP, Raffel LJ, Garchon HJ, Jacob CO, Serrano-Rios M, et al. (1997) 

Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 

polymorphisms in multiple ethnic groups. Hum Mol Genet 6: 1275-1282. 

277. Vaidya B, Imrie H, Perros P, Dickinson J, McCarthy MI, et al. (1999) Cytotoxic T 

lymphocyte antigen-4 (CTLA-4) gene polymorphism confers susceptibility to 

thyroid associated orbitopathy. Lancet 354: 743-744. 

278. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, et al. (2000) Familial primary 

pulmonary hypertension (gene PPH1) is caused by mutations in the bone 

morphogenetic protein receptor-II gene. Am J Hum Genet 67: 737-744. 

279. Thio CL, Mosbruger TL, Kaslow RA, Karp CL, Strathdee SA, et al. (2004) 

Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus 

infection. J Virol 78: 11258-11262. 

280. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14: 

271-313. 

281. Auld DS (2009) The ins and outs of biological zinc sites. Biometals 22: 141-148. 

282. Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions 

bind in proteins. Proc Natl Acad Sci U S A 87: 5648-5652. 

283. Johnson JL, Coyne KE, Garrett RM, Zabot MT, Dorche C, et al. (2002) Isolated 

sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 

patients. Hum Mutat 20: 74. 

284. Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, et al. (1997) 

Molecular basis of sulfite oxidase deficiency from the structure of sulfite 

oxidase. Cell 91: 973-983. 



 

 207

285. Wilson HL, Wilkinson SR, Rajagopalan KV (2006) The G473D mutation impairs 

dimerization and catalysis in human sulfite oxidase. Biochemistry 45: 2149-

2160. 

286. Yokoe S, Takahashi M, Asahi M, Lee SH, Li W, et al. (2007) The Asn418-linked 

N-glycan of ErbB3 plays a crucial role in preventing spontaneous 

heterodimerization and tumor promotion. Cancer Res 67: 1935-1942. 

287. Bluyssen HA, Levy DE (1997) Stat2 is a transcriptional activator that requires 

sequence-specific contacts provided by stat1 and p48 for stable interaction with 

DNA. J Biol Chem 272: 4600-4605. 

288. Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis 

for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation 

domains. Embo J 28: 948-958. 

289. Nickerson DA, Rieder MJ, Crawford DC, Carlson CS, Livingston RJ (2005) An 

Overview of the Environmental Genome Project. Essays on the Future of 

Envrionmental Health Research: 42-53. 

290. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, et al. (2010) 

Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42: 

454-458. 

291. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) 

Potential etiologic and functional implications of genome-wide association loci 

for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362-9367. 

292. Smith TF, Waterman MS (1981) Identification of common molecular 

subsequences. J Mol Biol 147: 195-197. 

293. Schreyer A, Blundell T (2009) CREDO: a protein-ligand interaction database for 

drug discovery. Chem Biol Drug Des 73: 157-167. 

294. Lee S, Brown A, Pitt WR, Perez Higueruelo A, Gong S, et al. (2009) Structural 

interactomics: informatics approaches to aid the interpretation of genetic 

variation and the development of novel therapeutics. Mol Biosyst. 

295. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, et al. (2000) 

GenBank. Nucleic Acids Res 28: 15-18. 



 

 208

296. Higueruelo AP, Schreyer A, Bickerton GR, Pitt WR, Groom CR, et al. (2009) 

Atomic interactions and profile of small molecules disrupting protein-protein 

interfaces: the TIMBAL database. Chem Biol Drug Des 74: 457-467. 

297. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The human 

genome browser at UCSC. Genome Res 12: 996-1006. 

298. Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, et al. (2010) WormBase: a 

comprehensive resource for nematode research. Nucleic Acids Res 38: D463-

467. 

299. Haliloglu T, Keskin O, Ma B, Nussinov R (2005) How similar are protein folding 

and protein binding nuclei? Examination of vibrational motions of energy hot 

spots and conserved residues. Biophys J 88: 1552-1559. 

300. Park J, Bolser D (2001) Conservation of protein interaction network in evolution. 

Genome Inform 12: 135-140. 

301. Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological importance 

of hub proteins. PLoS Comput Biol 2: e88. 

302. Pal C, Papp B, Hurst LD (2003) Genomic function: Rate of evolution and gene 

dispensability. Nature 421: 496-497; discussion 497-498. 

303. Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, et al. (2005) Functional 

genomic analysis of the rates of protein evolution. Proc Natl Acad Sci U S A 

102: 5483-5488. 

304. Andreeva A, Murzin AG (2006) Evolution of protein fold in the presence of 

functional constraints. Current Opinion in Structural Biology 16: 399. 

305. Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE (2009) The origin, 

evolution and structure of the protein world. The Biochemical Journal 417: 621. 

306. Copley RR, Letunic I, Bork P (2002) Genome and protein evolution in eukaryotes. 

Current Opinion in Chemical Biology 6: 39-45. 

307. Kinch LN, Grishin NV (2002) Evolution of protein structures and functions. 

Current Opinion in Structural Biology 12: 400. 

308. Choi JK, Kim SC, Seo J, Kim S, Bhak J (2007) Impact of transcriptional properties 

on essentiality and evolutionary rate. Genetics 175: 199-206. 

309. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly 

expressed proteins evolve slowly. Proc Natl Acad Sci U S A 102: 14338-14343. 



 

 209

310. Zeldovich KB, Shakhnovich EI (2008) Understanding Protein Evolution: From 

Protein Physics to Darwinian Selection. Annual Review of Physical Chemistry 

59: 105-127. 

311. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev 

Genet 39: 309-338. 

312. Izarzugaza JM, Redfern OC, Orengo CA, Valencia A (2009) Cancer-associated 

mutations are preferentially distributed in protein kinase functional sites. 

Proteins 77: 892-903. 

313. Ferrer-Costa C, Orozco M, de la Cruz X (2007) Characterization of compensated 

mutations in terms of structural and physico-chemical properties. J Mol Biol 

365: 249-256. 

 

 


